Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3734
標題: 溫度/酸鹼應答型殼層交聯式微胞之製備及微胞/液胞轉換結構研究
Synthesis of Thermo- and pH-Responsive Shell Cross-Linked Micelles and Their Micelle/Vesicle Morphology Transition
作者: 姜文軒
Chiang, Wen-Hsuan
關鍵字: graft copolymers;接枝型高分子;SCL micelles;self-assembly;殼層交聯式微胞;自組裝排列
出版社: 化學工程學系所
引用: [1] Read, E. S.; Armes, S. P. Chem Commun. 2007, 3021-3035. [2] Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A. Adv. Drug Delivery Rev. 2001, 53, 95-108. [3] Zhang, L.; Guo, R.; Yang, M.; Jiang, X.; Liu, B. Adv. Mater. 2007, 19, 2988-2992. [4] Wang, H.; An, Y.; Huang, N.; Ma, R.; Li, J.; Shi, L. Macromol. Rapid Commun. 2008, 29, 1410-1414. [5] Licciardi, M.; Giammona, G.; Du, J.; Armes, S. P.; Tang, Y.; Lewis, A. L. Polymer 2006, 47, 2946-2955. [6] Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K. J. Am. Chem. Soc. 2008, 130, 6001-6009. [7] Li, Y. Y.; Cheng, H.; Zhang, Z. G.; Wang, C.; Zhu, J. L.; Liang, Y.; Zhang, K. L.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Nano Lett. 2008, 2, 125-133. [8] Cheng, C.; Wei, H.; Zhu, J. L.; Chang, C.; Cheng, H.; Li, C.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Bioconjucate Chem. 2008, 19, 1194-1201. [9] Chen, X.; An, Y.; Zhao, D.; He, Z.; Zhang, Y.; Cheng, J.; Shi, L. Langmuir 2008, 24, 8198-8204. [10] Luo, S.; Xu, J.; Zhang, Y.; Liu, S.; Wu, C. J. Phys. Chem. B 2005, 109, 22159-22166. [11] Schilli, C. M.; Zhang, M.; Rizzardo, E.; Thang, S. H.; Chong, (Bill) Y. K.; Edwards, K.; Karlsson, G.; Müller, A. H. E. Macromolecules 2004, 37, 7861-7866. [12] Zhang, W.; Shi, L.; Ma, R.; An, Y.; Xu, Y.; Wu, K. Macromolecules 2005, 38, 8850-8852. [13] Cai, Y.; Armes, S. P. Macromolecules 2004, 37, 7116-7122. [14] Arotcarena, M.; Heise, B.; Ishaya, S.; Laschewsky, A. J. Am. Chem. Soc. 2002, 124, 3787-3793. [15] Wan, S.; Jiang, M.; Zhang, G. Macromolecules 2007, 40, 5552-5558. [16] Harada, A.; Kataoka, K. Macromolecules 1995, 28, 5294-5299. [17] Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G.; Alakhov, V. Y. Bioconjugate Chem. 1995, 6, 639-643. [18] Kakizawa, Y.; Harada, A.; Kataoka, K. J. Am. Chem. Soc. 1999, 121, 11247-11248. [19] Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K. J. Am. Chem. Soc. 2008, 130, 6001-6009. [20] Park, J. S.; Akiyama, Y.; Yamasaki, Y.; Kataoka, K. Langmuir 2007, 23, 138-146. [21] Cheng, H.; Zhu, J. L.; Zeng, X.; Jing, Y.; Zhang, X. Z.; Zhuo, R. X. Bioconjugate Chem. 2009, 20, 481-487. [22] Voets, I. K.; Moll, P. M.; Aqil, A.; Jerome, C.; Detrembleur, C.; de Waard, P.; de Keizer, A.; Cohen Stuart, M. A. J. Phys. Chem. B 2008, 112, 10833-10840. [23] Li, G.; Shi, L.; Ma, R.; An, Y.; Huang, N. Angew. Chem. Int. Ed. 2006, 45, 4959-4962. [24] Ma, R.; Wang, B.; Xu, Y.; An, Y.; Zhang, W.; Li, G.; Shi, L. Macromol. Rapid Commun. 2007, 28, 1062-1069. [25] Lin J.; Zhu, J.; Chen, T.; Lin, S.; Cai, C.; Zhang, L.; Zhuang, Y.; Wang, X. S. Biomaterials 2009, 30, 108-117. [26] Guo, A.; Liu, G. J.; Tao, J. Macromolecules 1996, 29, 2487-2493. [27] Yusa, S.; Sugahara, M.; Endo, T.; Morishima, Y. Langmuir 2009, 25, 5258-5265. [28] Iijima, M.; Nagasaki, Y.; Okada, T.; Kato, M.; Kataoka, K. Macromolecules 1999, 32, 1140-1146. [29] Zhang, J.; Jiang, X.; Zhang, Y.; Li, Y.; Liu, S. Macromolecules 2007, 40, 9125-9132. [30] O'Reilly, R. K.; Joralemon, M. J.; Hawker, C. J.; Wooley, K. L. New J. Chem. 2007, 31, 718-724. [31] Zhang, J.; Zhou, Y.; Zhu, Z.; Ge, Z.; Liu, S. Macromolecules 2008, 41, 1444-1454. [32] Zhang, Y.; Gu, W.; Xu, H.; Liu, S. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2379-2389. [33] Chen, Y. M.; Du, J. Z.; Xiong, M.; Zhang, K.; Zhu, H. Macromol. Rapid Commun. 2006, 27, 741-750. [34] Thurmond, K. B.; Kowalewski, T.; Wooley, K. L. J. Am. Chem. Soc. 1996, 118, 7239-7240. [35] Huang, H. Y.; Kowalewski, T.; Remsen, E. E.; Gertzmann, R. R.; Wooley, K. L. J. Am. Chem. Soc. 1997, 119, 11653-11659. [36] Thurmond, K. B.; Kowalewski, T.; Wooley, K. L. J. Am. Chem. Soc. 1997, 119, 6656-6665. [37] Remsen, E. E.; Thurmond, K. B.; Wooley, K. L. Macromolecules 1999, 32, 3685-3689. [38] Thurmond, K. B.; Huang, H. Y.; Clark, C. G.; Kowalewski, T.; Wooley, K. L. Colloids Surf. B: Biointerfaces 1999, 16, 45-54. [39] Rodriguez-Hernandez, J.; Babin, J.; Zappone, B.; Lecommandoux, S. Biomacromolecules 2005, 6, 2213-2220. [40] Butun, V.; Billingham, N. C.; Armes, S. P. J. Am. Chem. Soc. 1998, 120, 12135-12136. [41] Butun, V.; Wang, X. S.; Banez, M. V. D.; Robinson, K. L.; Billingham, N. C.; Armes, S. P.; Tuzar, Z. Macromolecules 2000, 33, 1-3. [42] Liu, S.; Weaver, J. V. M.; Tang, Y.; Billingham, N. C.; Armes, S. P.; Tribe, K. Macromolecules 2002, 35, 6121-6131. [43] Butun, V.; Top, R. B.; Ufuklar, S. Macromolecules 2006, 39, 1216-1225. [44] Jiang, X.; Ge, Z.; Xu, J.; Liu, H.; Liu, S. Biomacromolecules 2007, 8, 3184-3192. [45] Liu, S. Y.; Ma, Y. H.; Armes, S. P.; Perruchot, C.; Watts, J. F. Langmuir 2002, 18, 7780-7784. [46] Li, Y.; Lokitz, B. S.; McCormick, C. L. Macromolecules 2006, 39, 81-89. [47] Li, Y.; Lokitz, B. S.; Armes, S. P.; McCormick, C. L. Macromolecules 2006, 39, 2726-2728. [48] Joralemon, M. J.; O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L. J. Am. Chem. Soc. 2005, 127, 16892-16899. [49] Weaver, J. V. M.; Tang, Y.; Liu, S.; Iddon, P. D.; Grigg, R.; Billingham, N. C.; Armes, S. P.; Hunter, R.; Rannard, S. P. Angew. Chem. Int. Ed. 2004, 43, 1389-1392. [50] Lokitz, B. S.; Convertine, A. J.; Ezell, R. G.; Heidenreich, A.; Li, Y.; McCormick, C. L. Macromolecules 2006, 39, 8594-8602. [51] Liu, S. Y.; Armes, S. P. J. Am. Chem. Soc. 2001, 123, 9910-9911. [52] Ding, J. F.; Liu, G. J. Macromolecules 1998, 31, 6554-6558. [53] Stewart, S.; Liu, G. J. Chem. Mater. 1999, 11, 1048-1054. [54] Huang, H. Y.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L. J. Am. Chem. Soc. 1999, 121, 3805-3806. [55] Sanji, T.; Nakatsuka, Y.; Ohnishi, S.; Sakurai, H. Macromolecules 2000, 33, 8524-8526. [56] Zhang, Q.; Remsen, E. E.; Wooley, K. L. J. Am. Chem. Soc. 2000, 122, 3642-3651. [57] Dou, H.; Jiang, M.; Peng, H.; Chen, D.; Hong, Y. Angew. Chem. Int. Ed. 2003, 42, 1516-1519. [58] Pinchuk, L.; Eckstein, E. C.; van der Mark, M. R. J. Biomed. Mater. Res. 1984, 18, 671-684. [59] Adalsteinsson, O.; Lamotte, A.; Baddour, R. F.; Colton, C. K.; Pollak, A.; Whitesides, G. M. J. Mol. Catal. 1979, 6, 199-225. [60] Kaneko, Y.; Sakai, K.; Kikuchi, A.; Yoshida, R.; Sakurai, Y.; Okano, T. Macromolecules 1995, 28, 7717-7723. [61] Zalipsky, S.; Gilon, C.; Zilkha, A. Eur. Polym. J. 1983, 19, 1177-1183. [62] Chiang, W. H.; Hsu, Y. H.; Lou, T. W.; Chern, C. S.; Chiu, H. C. Macromolecules 2009, 42, 3611-3619.. [63] Chiang, W. H.; Hsu, Y. H.; Chern, C. S.; Chiu, H. C. J. Phys. Chem. B 2009, 113, 4187-4196. [64] Luo, S.; Xu, J.; Zhu, Z.; Wu, C.; Liu, S. J. Phys. Chem. B 2006, 110, 9132-9139. [65] Chung, J. E.; Yokoyama, M.; Suzuki, K.; Aoyagi, T.; Sakurai, Y.; Okano, T. Coll. Surf. B 1997, 9, 37-48. [66] Christensen, M. L.; Keiding, K. Colloids and Surfaces A : Physicochem. Eng. Aspects 2005, 252, 61-69. [67] Pankow, J. F. Aquatic Chemistry Concepts, Lewis Publisher, Chelsea, MI, 1991. [68] Luo, S.; Xu, J.; Zhang, Y.; Liu, S.; Wu, C. J. Phys. Chem. B 2005, 109, 22159-22166. [69] Wu, C.; Zhou, S. Q. Phys. Rev. Lett. 1996, 77, 3053-3055. [70] Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99, 2039-2044. [71] Hsu, Y. H.; Chiang, W. H.; Chen, C. H.; Chern, C. S.; Chiu, H. C. Macromolecules 2005, 38, 9757-9765. [72] Hsu, Y. H.; Chiang, W. H.; Chen, M. C.; Chern, C. S.; Chiu, H. C. Langmuir 2006, 22, 6764-6770. [73] Qian, J.; Wu, F. Macromolecules 2008, 41, 8921-8926. [74] Jiang, X.; Zhang, G.; Narain, R.; Liu, S. Langmuir 2009, 25, 2046-2054. [75] Smith, A. E.; Xu, X.; Abell, T. U.; Kirkland, S. E.; Hensarling, R. M.; McCormick, C. L. Macromolecules 2009, 42, 2958-2964. [76] Chen, G.; Hoffman, A. S. Nature 1995, 373, 49-52. [77] Kulkarni, S.; Schilli, C.; Grin, B.; Muller, A. H. E.; Hoffman, A. S.; Stayton, P. S. Biomacromolecules 2006, 7, 2736-2741. [78] Schild, H. G.; Tirrell, D. A. Langmuir 1991, 7, 1319-1324. [79] Yang, Z.; Zhang, W.; Zou, J.; Shi, W. Polymer 2007, 48, 931-938. [80] Holappa, S.; Kantonen, L.; Winnik, F. M.; Tenhu, H. Macromolecules 2004, 37, 7008-7018. [81] Deo, P.; Deo, N.; Somasundaran, P.; Jockusch, S.; Turro, N. J. J. Phys. Chem. B 2005, 109, 20714-20718. [82] Tam, J. F.; Ravi, P.; Too, H. P.; Hatton, T. A.; Tam, K. C. Biomacromolecules 2005, 6, 498-506. [83] Lee, J. H.; Lee, H. B.; Andrade, J. D. Prog. Polym. Sci. 1995, 20, 1043-1079. [84] Allen, C.; Maysinger, D.; Eisenberg, A. Coll. Surf. B 1999, 16, 3-27. [85] Yoo, M. K.; Jang, M. K.; Nah, J. W.; Park, M. R.; Cho, C. S. Macromol. Chem. Phys. 2006, 207, 528-535. [86] Zeng, F.; Tong, Z.; Feng, H. Polymer 1997, 38, 5539-5544. [87] Heald, C. R.; Stolnik, S.; Kujawinski, K. S.; De Matteis, C.; Garnett, M. C.; Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R. Langmuir 2002, 18, 3669-3675. [88] Podo, F.; Ray, A.; Nemethy, G.; J. Am. Chem. Soc. 1973, 95, 6164-6171. [87] Jones, C. D.; Lyon, L. A. Macromolecules 2000, 33, 8301-8306. [89] Chiu, H. C.; Lin, Y. F.; Hung, S. H. Macromolecules 2002, 35, 5235-5242. [91] Ma, Q.; Remsen, E. E.; Kowalewski, T.; Schaefer, J.; Wooley, K. L. Nano Lett. 2001, 1, 651-655. [92] Zhang, Z.; Liu, G.; Bell, S. Macromolecules 2000, 33, 7877-7883. [93] Kokufuta, E.; Wang, B.; Yoshida, R.; Khokhlov, A. R.; Hirata, M. Macromolecules 1998, 31, 6878-6884. [94] Jones, C. D.; Lyon, L. A. L. Macromolecules 2000, 33, 8301-8306 [95] Wei, H.; Wu, D. Q.; Li, Q.; Chang, C.; Zhou, J. P.; Zhang, X. Z.; Zhuo, R. X. J. Phys. Chem. C 2008, 112, 15329-15334. [96] Niu, A. Z.; Liaw, D. J.; Sang, H. C.; Wu, C. Macromolecules 2000, 33, 3492-3494. [97] Zhang, W.; Zhou, X.; Li, H.; Fang, Y.; Zhang, G. Macromolecules 2005, 38, 909-914. [98] Tu, Y.; Wan, X.; Zhang, D.; Zhou, Q.; Wu, C. J. Am. Chem. Soc. 2000, 122, 10201-10205. [99] Zhang, G. Z.; Wu, C. Phys. Rev. Lett. 2001, 86, 822-825. [100] Stewart, S.; Liu, G. Chem, Mater. 1999, 11, 1048-1054. [101] Yao, X.; Chen, D.; Jiang, M. J. Phys. Chem. B 2004, 108, 5225-5229. [102] Chen, H. ; Zhang, Q. ; Li, J. ; Ding, Y. ; Zhang, G. ; Wu, C. Macromolecules 2005, 38, 8045-8050. [103] Hu, T.; Wu, C. Macromolecules 2001, 34, 6802-6805. [104] Hoare, T.; Pelton, R. Macromolecules 2004, 37, 2544-2550. [105] Qian, J.; Wu, F. Macromolecules 2008, 41, 8921-8926. [106] Sundararaman, A. ; Stephan, T. ; Grubbs, R. B. J. Am. Chem. Soc. 2008, 130, 12264-12265. [107] Schild, H. G.; Tirrell, D. A. Langmuir 1991, 7, 1319-1324. [108] Yang, Z.; Zhang, W.; Zou, J.; Shi, W. Polymer 2007, 48, 931-938. [109] Soga, O.; van Nostrum, C. F.; Ramzi, A.; Visser, T.; Soulimani, F.; Frederik, P. M.; Bomans, P. H. H.; Hennink, W. E. Langmuir 2004, 20, 9388-9395.
摘要: 
本研究中,以acrylic acid (AAc)與2-methacryoylethyl acrylate (MEA) 單元所組成之共聚合高分子作為高分子主鏈,poly(N-isopropylacrylamide) (PNIPAAm)或PNIPAAm/monomethoxypoly(ethylene glycol) (mPEG)為側鏈之接枝高分子於pH 5.0高溫水相中,皆可經由PNIPAAm鏈段間疏水聚集而自組裝排列形成奈米級高分子微胞(micelles)。實驗結果證實在僅有PNIPAAm側鏈的接枝高分子系統中,主鏈之未解離AAc傾向與側鏈NIPAAm單元形成廣泛的氫鍵作用力,隨溶液溫度持續增加,高分子聚集形成微胞過程中,AAc與MEA單元所構成之高分子主鏈被嵌入疏水PNIPAAm核心。於60 oC,將ammonium peroxydisulfate (APS) 加入微胞溶液中,起始位在核心與殼層區域之MEA單元雙鍵進行聚合交聯反應,得到近似bulk (core/shell) cross-linked (BCL)微胞結構(水力直徑約130 nm),高分子交聯網狀結構遍及微胞的核心與殼層。另一方面,以PNIPAAm與mPEG為側鏈的接枝高分子系統,mPEG鏈段的存在不僅能大幅減少AAc與NIPAAm單元間交互作用力,並且在高分子微胞形成過程中,能有效防止高分子主鏈被埋入疏水核心。有利於高分子形成類似洋蔥狀(onion-like)的微胞結構;微胞核心由疏水PNIPAAm鏈段聚集構成,殼層則由AAc與MEA單元所組成,親水mPEG鏈段位於微胞殼層外部。於60 oC,將APS加入微胞溶液中,起始洋蔥狀微胞之MEA雙鍵(主要位於殼層)進行聚合交聯反應,得到結構類似shell cross-linked (SCL)微胞的奈米膠粒(粒徑約60 nm),其殼層為一富含AAc單元水膠薄層。由此可知,mPEG接枝側鏈的存在與否不僅在高分子微胞型態上扮演至關重要的角色,並且顯著影響交聯式微胞結構及溫度與酸鹼應答行為模式。
有系統地,經由調控外部溶液的pH值或溫度,可操控殼層交聯式(SCL)微胞進行可逆微胞/液胞(vesicles)結構轉換。當SCL微胞於pH 7.0溶液中(20 oC),交聯水膠薄層中AAc單元大幅離子化,提高水膠薄層內外離子滲透壓差,導致大量水分子進入,使其結構類似高度膨潤的液胞。由於富含AAc水膠薄層極度擴張,導致SCL微胞內部PNIPAAm鏈段間的空間距離增大,即使於高溫水相中,局部濃度較低之PNIPAAm鏈段僅能進行intra-chain的相變化,無法顯著改變SCL微胞粒徑與結構;即SCL微胞於高溫仍維持液胞型態。此外,憑藉環繞於水膠薄層(近似液胞疏水膜)內外之PNIPAAm與mPEG鏈段的高度水合作用力,即使溶液pH值由7.0降低至3.0,SCL微胞依然保持液胞型態。然而,持續增加溶液溫度,SCL微胞的粒徑與Rg/Rh值皆呈現明顯下降,顯示其結構由液胞轉變成具有單一核-殼微胞型態,核心由大量疏水PNIPAAm鏈段聚集構成。另一方面,經由增加高分子主鏈之MEA單元含量,可提高SCL微胞的殼層交聯密度,減少其溫度與酸鹼應答之體積變化程度。此外,於pH 7.4與37 oC水相中,MEA單元與高分子主鏈間之酯鍵水解賦予SCL微胞可降解性質。綜合上述實驗結果,本研究所製備SCL微胞不僅具有酸鹼與溫度應答之結構可逆轉換特性亦擁有生物可降解性,於藥物傳遞與控制釋放的應用層面具有高度開發潛力。

Two graft copolymers comprising acrylic acid (AAc) and 2-methacryloylethyl acrylate (MEA) units as the backbone and either poly(N-isopropylacrylamide) (PNIPAAm) alone or both PNIPAAm and monomethoxypoly(ethylene glycol) (mPEG) as the grafts were synthesized. These copolymers in the aqueous phase (pH 5.0) underwent thermally induced self-assembly into micelles. For the copolymer containing PNIPAAm grafts only, extensive interactions between unionized AAc residues and PNIPAAm segments occurred, thereby rendering polymer backbones partially embedded within the hydrophobic cores of thermally induced micelles. This then led to bulk (core/shell) cross-linking of micelles upon radical polymerization of the MEA units within the micellar assemblies in the aqueous phase. By contrast, with mPEG being incorporated into the copolymer, association of the backbones with PNIPAAm is greatly retarded. As a result, three-layer onion-like polymeric micelles consisting of hydrophobic PNIPAAm cores surrounded by AAc-rich shells and hydrophilic mPEG coronas were achieved. Shell cross-linked micelles were then produced via polymerization of the MEA units confined to the AAc/MEA-rich shell regions. The presence or absence of mPEG in the PNIPAAm-containing graft copolymer plays a crucial role in determining the morphological structure of micelles and the structural responses of the subsequently cross-linked micelles to pH and temperature changes.
More importantly, the morphology of SCL micelles in aqueous solutions can be altered readily by changing external pH and temperature. For SCL micelles at pH 7.0 and 20 oC, due to enhanced extent of AAc ionization in interfacial gel layers and the highly hydrated PNIPAAm segments and thus water influx, the swollen SCL micelles exhibit a more extend and vesicle-like structure. In addition, because of the relatively spatial segregation of the inner PNIPAAm segments, their subtle phase transition occurs only at high temperature and is incapable of changing obviously particle size and morphology. As solution pH is lowered to 3.0, the vesicular structure of SCL micelles can be maintained sufficiently by the hydrated inner PNIPAAm and outer mPEG segments surrounding the compact interfacial gel layers. Very interestingly, with increasing continually temperature, their significantly reduced size and Rg/Rh value suggest the morphological transition of SCL micelles from a vesicle-like sphere to a core-shell micelle through the development of a dense solid-like core from extensive hydrophobic PNIPAAm association and solidification. On the other hand, elevating the MEA content of graft copolymers can increase the cross-linking degree of SCL micelles to reduce their stimuli-responsive volume variation extent. In aqueous solutions of pH 7.4 and 37 oC, the SCL micelles display degradable property with hydrolysis of ester bonds between MEA residues and polymeric networks. In this study, the thermo- and pH-responsive structural transition of SCL micelles and their degradable property could accomplish potentially the requirements for drug delivery and controlled release applications.
URI: http://hdl.handle.net/11455/3734
其他識別: U0005-1307200911451000
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.