Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3740
標題: 高爐爐下部鐵水流動中鈦化合物濃度分佈之數值模擬
Numerical Simulation of Titanium Compounds Concentration Distribution in Liquid Iron flow in the Hearth of a Blast Furnace during Tapping Process
作者: 林忠豪
Lin, Chung-Hao
關鍵字: Blast furnace;高爐;Cored wire;Titanium dioxide;Titanium carbide;Hearth protection;Computational fluid dynamics;喂線;二氧化鈦;碳化鈦;爐床防護;計算流體力學
出版社: 化學工程學系所
引用: [1]http://museum.csc.com.tw/ [2]http://wwwchem.uwimona.edu.jm:1104/courses/blast.html [3]羅文驥,傳統產業之技術轉移-以一貫作業鋼廠中鋼公司煉鐵廠為例,95 年跨領域科技管理研習班國外專題先修班受訓心得報告,2006。 [4]R. McNally, F. Roulet, D. Kuster, J. Schoennahl, D. Lucke, Advances and advantages with ceramic cup technology, Alafar, Mexico, 2000. [5]A. Shinotake, H. Nakamura, N. Yadoumaru, Y. Morizane, M. Meguro, Investigation of blast-furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation, ISIJ International 43 (2003) 321-330. [6]S. N. Silva, F. Vernilli, S. M. Justus, O. R. Marques, A. Mazine, J. B. Baldo, E. Longo, J. A. Varela, Wear mechanism for blast furnace hearth refractory lining, Ironmaking and Steelmaking 32 (2005) 459-467. [7]宋建成編,高爐燒鐵理論與操作,冶金工業出版社,北京,2006。 [8]N. Standish, P. J. Campbell, Analysis of liquid flow in blast furnace hearths, Transactions ISIJ 24 (1984) 709-717. [9]N. Standish, R. Reid, J. W. Harpley, Model studies of liquid flow in blast furnace hearths, Tetsu-to-Hagane 69 (1983) S734. [10]M. Tachimori, J. Ohno, M. Nakamura, Y. Hara, Flow of iron in blast furnace hearth, Tetsu-to-Hagane 70 (1984) 2224-2231. [11]K. H. Peters, H. W. Gudenau, G. Still, Hot metal flow in a blast furnace hearth - Model tests, Steel research 56 (1985) 547-552. [12]A. G. A. Nnanna, A. Uludogan, D. Roldan, C. Q. Zhou, P. Chuabal, D. Huang, Water model of a blast furnace hearth for flow pattern investigation, Association for Iron & Steel Technology Proceedings, Nashville, United States, 2004. [13]M. J. Luomala, O. J. Mattila, J. J. Härkki, Physical modelling of hot metal flow in a blast furnace hearth, Scandinavian Journal of Metallurgy 30 (2001) 225-231. [14]J. H. Lee, J. K. Chung, Effect of packed bed state on the liquid flow in blast furnace hearth, Second International Conference on Process Development in Iron and Steelmaking, Luka, Sweden, 2004. [15]A. K. Vats, S. K. Dash, Flow induced stress distribution on wall of blast furnace hearth, Ironmaking and Steelmaking 27 (2000) 123-128. [16]S. K. Dash, S. K. Ajmani, A. Kumar, H. S. Sandhu, Optimisation of tap hole length of ''D'' blast furnace using mathematical modeling, Tata Search (2001) 144-150. [17]C. N. Huang, W. T. Cheng, S. W. Du, Steady iron flow and heat transfer in blast furnace hearth, Symposium of Transport Phenomena and Application, Taipei, Taiwan, 2005. [18]B. Desai, R. V. Ramna, S. K. Dash, Optimum coke-free space volume in blast furnace hearth by wall shear stress analysis, ISIJ International 46 (2006) 1396-1402. [19]傅世敏,高爐爐床內鐵水環流與內磚侵蝕,燒鐵 14 (1995) 8-11。 [20]K. Raipala, Deadman and hearth phenomena in the blast furnace, Scandinavian Journal of Metallurgy 29 (2000) 39-46. [21]K. W. Cowling, A. M., F. I. Ceram, J. P., Blast furnace refractories, The Refractories Journal 40 (1964) 46-53. [22]G. Leprince, J. M. Steiler, D. Sert, Blast furnace hearth life: models for assessing the wear and understanding the transient thermal states, Ironmaking Conference Proceedings, Dallas, United States, 1993. [23]K. Kurita, A. Ogawa, A study of wear profile of blast furnace hearth affected by fluid flow and heat transfer, The First International Congress of Science and Technology of Ironmaking, Sendai, Japan, 1994. [24]K. Takatani, T. Inada, K. Takata, Mathematical model for transient erosion process of blast furnace hearth, ISIJ International 41 (2001) 1139-1145. [25]C. E. Huang, S. H. Du, W. T. Cheng, Numerical investigation on hot metal flow in blast furnace hearth through CFD, ISIJ International 48 (2008) 1182-1187. [26]黃啟恩,高爐爐下部流力與熱流數值模擬,中興大學化學工程研究所博士論文,2008。 [27]沙永志、葉才彥,高爐風口噴鈦護爐,燒鐵 14 (1995) 17-20。 [28]K. Hisada, Y. Jyomoto, On the properties of Ti-bears sampled from the blast furnace hearth, Tetsu-to-Hagane 50 (1964) 1616-1619. [29]T. Inatani, F. Aratani, N. Tsuchiya, M. Kondo, K. Okabe, Solidification of hot metal and formation of titanium compounds in the blast furnace hearth, Stahl und Eisen 94 (1974) 47-53. [30]K. Narita, M. Maekawa, T. Onoye, Y. Satoh, M. Miyamoto, Formation of titanium compounds, so-called titanium bear, in the blast furnace hearth, Transactions ISIJ 17 (1977) 459-468. [31]Y. Li, Y. Li, R.J. Fruehan, Formation of titanium carbonitride from hot metal, ISIJ International 41 (2001) 1417-1422. [32]K. Datta, P.K. Sen, S.S. Gupta, A. Chatterjee, Effect of titania on the characteristics of blast furnace slags, Steel Research 64 (1993) 232-238. [33]鄭生武、高影,承鋼鈦護爐劑研製、發展與護爐效果,承鋼技術 (1992) 13-15。 [34]宋建成主編,高爐含鈦物料護爐技術,冶金工業出版社,北京,1994。 [35]D.W. Stothart, R.D. Chaykowski, R.J. Donaldson, D.H. Pomeroy, Hearth monitoring experiences at dofasco’s no. 4 blast furnace, Iron Steelmaker 24 (1997) 43-50. [36]Y. Yu, S. Meng, Protection of BE lining with Ti-bearing slag in production of foundary iron, Iron and Steel 25 (1990) 8-13. [37]T. Okada, K. Kuwano, K. Shimomura, R. Hori, H. Miyatani, Y. Ochiai, K. Uemura, Protection of blast furnace hearth refractories by TiO2 injection through tuyeres, Ironmaking Conference Proceedings, Iron and Steel Institute of Japan, Sendai, 1991. [38]歐陽雄,梅山一號高爐長壽達標實踐,燒鐵 3 (1994) 1-5。 [39]郭和才,含鈦物料護爐技術淺談,湖南冶金 5 (1995) 33-37。 [40]J. Gu, An approach to the method of adding Ti-bearing material for protecting the hearth and bottom of BF, Ironmaking 16 (1997) 10-13. [41]M. Song, M. Zou, X. Zhan, B. Zhu, Y. Guan, Investigation on damage of bottom and hearth of No. 4 BF at WISGCO, Ironmaking 16 (1997) 14-17. [42]辛公良、許思東、王全貴,濟鋼1號高爐爐役後期的護爐操作,燒鐵 20 (2001) 41-42。 [43]X. Zhang, A. Zhung, Y. Cui, Practice of maintenance at later stage of campaign in No. 7 BF of Changgang Group, Shanzi Metallurgy 102 (2006) 54-57. [44]張玉才,高爐含鈦物料護爐技術概況,梅山科技 2 (2006) 56-59。 [45]趙憲林,梅鋼高爐爐役後期的護爐實踐,梅山科技 2 (2007) 1-4。 [46]袁雪濤、米關君、趙文豐,唐鋼2560 m3 高爐鈦礦護爐實踐,燒鐵技術通訊 2 (2007) 2-3。 [47]Y. Lei, G. Wei, S. Zhao, Smelting practice with schreyerite in No. 5blast furnace of Chongqing Iron and Steel Co. with furnace protection effect, Ironmaking 26 (2007) 20-22. [48]王文忠、趙慶傑、徐金鋒,高爐風口喂線護爐技術開發與應用,四川冶金 27 (2005) 40-43。 [49]李東生、朱建偉、王文忠、趙慶傑、余武明,鞍鋼1號高爐風口喂線定向修復爐缸試驗,燒鐵 25 (2006) 48-49。 [50]王文忠,風口喂線護爐新工藝及其實踐,燒鐵技術通訊 1 (2007) 2-4。 [51]F. S. Kong, X. L. Yang, W. Z. Wang, B. L. Li, Development and application of orientation furnace maintenance technique with titanium-containing material cored wire in Jigang, Shandong Metallurgy 28 (2006) 13-15. [52]王玉慶,5號高爐以風口喂鈦精線護爐實踐,南鋼科技與管理 (2006) 28-31。 [53]X. Li, J. Wang, L. Lin, C. Song, X. Qin, Practice of feeding Ti-wire for protecting hearth in 2500 m3 BF at Ma steel, Sichuan Metallurgy 27 (2005) 43-47. [54]Y. Tomita, K. Tanaka, Development of the 3-dimensional numerical model to estimate hot metal flow and heat transfer behavior at the blast furnace hearth, The First International Congress of Science and Technology of Ironmaking, Sendai, 1994. [55]C. H. Lin, W. T. Cheng , S. W. Du, Numerical prediction on the variation of temperature in the eroded blast furnace hearth with titanium dioxide in hot metal, International Communications in Heat and Mass Transfer 36 (2009) 335-341. [56]方富民,流體力學,中國圖書公司出版,1996。 [57]R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1976. [58]Frank M. White., Fluid Mechanics, McGraw-Hill, Boston, 2008. [59]Fluent 6.2 User’s Guide, Fluent Inc., 2005. [60]B. G. Kyle, Chemical and process thermodynamics, Prentice Hall, New Jersey, 1999. [61]Jacob Bear, Dynamics of Fluids in Porous Media, American Elsevier Publish, New York, 1972 [62]A. Bejan, Convection Heat Transfer, Wiley, New York, 2004. [63]詹勳全,水流通過多孔介質二維水理模式開發與應用,成功大學水利及海洋工程研究所博士論文,2006。 [64]P. Forchheimer, Wasserbewegung Durch Boden, Z. Ver. Deutsch. Ing 45 (1901) 1782-1788. [65]S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress 48 (2) (1952) 89-94. [66]謝東伯,噴流或吸流對共軛熱傳的影響,中央大學化學工程研究所碩士論文,2001。 [67]A. V. Luikov, V. A. Aleksashenko, A. A. Aleksashenko, Analytical methods of solution of conjugated problem in convective heat transfer, International Journal of Heat and Mass Transfer 14 (1971) 1047-1056. [68]A. V. Luikov, Conjugate convective heat transfer problems, International Journal of Heat and Mass Transfer 17 (1974) 257-265. [69]Gambit Modeling Guide, Fluent Inc., 2003. [70]李人憲編,有限體積法基礎,國防工業出版社,北京,2008。 [71]王福軍編,計算流體動力學分析-CFD軟體原理與應用,清華大學出版社,北京,2004。 [72]Y. Jaluria, K. E. Torrance, Computational Heat Transfer, Hemisphere Pub. Corp., Washington, D.C., 1986. [73]H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume Method, Wiley, New York, 1995. [74]S. V. Patankar, D. B. Spalding, Acalculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer 15 (1972) 1787-1806. [75]http://www.cfdonline.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm) [76]V. Panjkovic, J. S. Truelove, P. Zulli, Numerical modeling of iron flow and heat transfer in blast furnace hearth, Ironmaking and Steelmaking 29 (2001) 390-400. [77]文光遠 黃家駿,含釩鈦鐵水性質的研究,鋼鐵 31 (1996) 6-11。 [78]文光遠、周永成,攀鋼高爐鐵水的性質,鋼鐵釩鈦 17 (1996) 24-29。 [79]朱俊虹,南鋼黏稠鐵水的研究,南鋼科技 4 (2000) 22-24。 [80]A. Kasai, T. Murayama, Y. Ono, Measurement of effective thermal conductivity of coke, ISIJ International 33 (6) (1993) 697-702. [81]J. R. Post, T. Peeters, Y. Yang, M. A. Reuter, Hot metal flow in the blast furnace: thermal and carbon dissolution effects on buoyancy, flow and refractory wear, Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 2003. [82]G. Neale, W. Nader, Practical significant of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium, The Canadian Journal of Chemical Engineering 52 (1974) 475-478. [83]K. Vafai, S. J. Kim, Analysis of surface enhancement by a porous substrate, Transaction of the ASME 112 (1990) 700-706. [84]黃崢翔,封閉區間內柱狀多孔質熱源之自然對流系統,中央大學化學工程研究所碩士論文,2000。 [85]王文忠,高爐含鈦爐料護爐機制,鋼鐵 23 (1988) 9-14。 [86]A. Preuer, J. Winter, H. Hiebler, Computation of the erosion in the hearth of a blast furnace, Steel Research 63 (1992) 147-151. [87]M.Kosaka, S. Minowa, On the rate of dissolution of carbon into molten Fe-C alloy, Transactions ISIJ 8 (1968) 392-400. [88]S. Lee, Size modification and coating of titanium dioxide using a premixed hydrogen/air flame, MS thesis, University of Maryland, College Park, 2006. [89]王文忠,風口喂線護爐新工藝及其實踐,燒鐵技術通訊 1 (2007) 2-4。 [90]G. A. Swift, R. Koc, Formation studies of TiC from carbon coated TiO2, Journal of Materials Science 34 (1999) 3083-3093. [91]http://www.codata.org/resources/databases/key1.html [92]D. D. Ebbing, General Chemistry, Houghton Mifflin Company, Boston, 1996. [93]http://www.crct.polymtl.ca/reacweb.htm [94]陳俊達、何忠根、吳耑熠,中鋼三號高爐爐床殘厚監看系統開發,礦冶 46 (2002) 117-124。
摘要: 
為了提升鐵水產量,延長高爐的使用壽命是全世界各大鋼鐵廠的重要目標,爐床侵蝕的防護變成高爐延壽的重要關鍵。因此,如何減緩爐床侵蝕現象是一個相當重要的問題。例如,加入二氧化鈦即為爐床防護的重要措施。此外,過去數十年來,由於電腦計算能力的進步,計算流體力學已成為分析與模擬工業問題的主要工具。像爐床這樣的高溫環境而不易進行實際觀察的情況下,就可以先利用計算流體力學進行模擬與預測可能的結果。本研究主旨在建立數值分析的程序來模擬爐床內碳化鈦的濃度場,並依據濃度分佈來探討其對於爐床防護的影響。
本文以澳洲BHP鋼鐵公司5號高爐爐下部為例,以強制對流質傳的觀點,考慮層流情形和假設漂浮型與中心焦柱觸底型爐蕊的模式下,建立包含多孔質效應、共軛熱傳效應和化學反應的動量與熱質傳之統制方程式,再利用商用計算流體力學軟體Fluent (6.2版) 搭配分離解法進行求解,模擬喂線技術將二氧化鈦從不同位置加入爐床,探討經由反應而產生的碳化鈦濃度分佈與其對爐床以及爐下部熱電偶溫度下降的影響,盼能提供現場操作人員與高爐工程師有關爐床防護的建議,以延長高爐操作壽命,降低生產成本並提高市場競爭力。依據以上的模擬分析,本研究的重要成果如下:
(1)爐蕊型態和鐵水流場影響濃度分佈甚鉅;若考慮反應於爐床模式中,建議使用全三維爐下部模式。
(2)在漂浮型爐蕊時,在碳化鈦加入位置下方的爐床壁面以及爐床底部有碳化鈦濃度分佈,預期有保護作用;在中心焦柱觸底型爐蕊時,在碳化鈦加入位置下方的爐床壁面以及爐床壁面與爐床底部交界處附近有碳化鈦濃度分佈,預期也有防護作用。
(3)依據碳化鈦的濃度分佈,加入二氧化鈦位置應距離出鐵口90度 (含) 以上較好;當侵蝕處在90度以內,建議可調整出鐵口位置。此外,加入二氧化鈦的位置必須位於侵蝕處的上游。
(4)依據碳化鈦濃度分佈結果,建議在爐床壁面旁加入二氧化鈦,預期對加入位置下方的爐床壁面以及爐床底部兼具有防護作用。
(5)碳化鈦質傳會對熱傳造成影響。有碳化鈦生成的地方可使爐床該處溫度以及該處爐磚內熱電偶的溫度下降;碳化鈦扮演熱阻的角色。

To prolong the campaign life of a blast furnace is one of the operation targets of steel works worldwide for maximizing its total hot metal production. Therefore, how to protect the furnace hearth and reduce the erosion phenomenon is a very important problem. For example, adding titanium dioxide (TiO2) is a key method for protecting the furnace hearth. Over the past several decades, in addition, on account of rapid progress in computer simulating capability, computational fluid dynamics (CFD) has become a powerful tool for simulating and analyzing the industrial problems. Like the furnace hearth, it is difficult to measure and study due to its high temperature environment, CFD can be used to simulate and predict the possible results firstly. The purpose of this research is to develop a numerical model to simulate concentration profiles in the furnace hearth and to investigate the effects of concentration profiles on furnace hearth protection.
On the basis of the model of the BHP Corporation No. 5 blast furnace hearth (PKBF5), this dissertation builds the governing equations including the effects of porous medium, conjugated heat transfer, and chemical reaction under the conditions of the laminar flow as well as floating deadman and inactive deadman. Then, the following calculations are done by means of the CFD package, Fluent (version 6.2), with the segregated method to simulate that the titanium carbide (TiC) distribution after adding TiO2 by means of cored wire technology and the decrease in the temperature of the furnace hearth as well as the thermocouples of the blast furnace bottom. We hope that the results of this research can provide some suggestions for hearth protection for technicians and blast furnace engineers to prolong the life of the blast furnace, reduce the cost and enhance the competitiveness. According to the numerical simulations, several important conclusions can be summarized below:
(1)The concentration profiles can be affected significantly by the deadman type and the liquid iron flow field. The full three dimensional model must be used when chemical reaction is considered in the furnace hearth simulation.
(2)In the floating deadman, the protective effect may be expected for the hearth walls under the adding location and the hearth bottom due to the generation of the TiC concentration; in the same reason, the protective effect may be predicted for the hearth walls under the adding location and the border between the heath walls and the hearth bottom in the inactive deadman.
(3)It is better if the location of adding TiO2 equals or larger than 90 degree from the taphole. When the erosion site inside the 90 degree from the taphole, we suggest that the taphole location should be adjusted away from the erosion site as soon as possible. In addition, the adding location must be chosen at the upstream of the erosion site.
(4)Due to the results of the TiC distribution, the protective effect may be predicted for the hearth walls under the adding location and the hearth bottom if TiO2 is added beside the hearth walls.
(5)The heat transfer in the furnace hearth may be affected by the TiC mass transfer. Besides, the temperature of the furnace hearth and the thermocouples in the bricks may be decreased due to the generation of the TiC concentration profile; the TiC plays a heat resistance role.
URI: http://hdl.handle.net/11455/3740
其他識別: U0005-1407200911231800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.