Please use this identifier to cite or link to this item:
標題: 不同粒徑奈米銀所形成之聚胺酯-奈米銀複合材料之物理性質與生物相容性
Physical characteristics and biocompatibility of the nanocomposites from polyurethane and silver nanoparticles of different sizes
作者: 劉宏力
Liu, Hung-Li
關鍵字: polyurethane;聚胺酯;silver nanoparticles;microphase separation;nanocomposites;奈米銀粒子;微相分離;奈米複合物
出版社: 化學工程學系所
引用: [1] 徐善慧 巧奪天工的人類智慧──組織工程 中興大學化學工程學系 科學發展 2001 [2] 李紹雄,劉益軍,聚氨酯樹脂及其應用,化學工業出版社 [3] King MW , Zhang Z. Quantitative analysis of the surface morphology and textile structure of the polyurethane Vascugraft arterial prosthesis using image and statistical analyses. Biomaterials 1994;15: 621-27. [4] Guidoin R, Sigot-Luirard MF. Studies on Segmental Hydrophilic/Hydrophobic Polyurethanes for Biomedical Applications. Biomaterials 1992;13:281-88. [5] Huang B, Marios Y. Cellular reaction to the Vascugraft® polyesterurethane vascular prosthesis: in vivo studies in rats. Biomaterials 1992;13:209-16. [6] Grasel TG, Cooper SL. Properties and biological interactions of polyurethane anionomers: effect of sulfonate incorporation. J Mat Res 1989;23:311-38. [7] Hergenrother RW, Cooper SL. Improved materials for blood- contacting applications:Blends of sulphonated and non-sulphonated polyurethanes. J Mat Sci 1992;3:313-21. [8] Dieterich D. Aqueous Emulsions, Dispersions and Solutions of Polyurethane Synthesis and Properties. Progrm Organic Coating 1981; 9:281-340. [9] Thapliyal BP, Chandra R. Photostability of polyetherurethaneureas. Polymer Int 1991;24:7-13. [10] Yen MS, Cheng KL. The effects of soft segments on the physical properties and water vapor permeability of H12MDI-PU cast films. J Appl Polym Sci. 1994;52:1707-17. [11] Yen MS, Kuo SC. Effects of mixing procedure on the structure and physical properties of ester-ether-type soft segment waterborne polyurethane. J Appl Polym Sci 1996;61:1639-47. [12] Yang CH, Li YJ, Wen TC. A Mixture Design Approach to PEG−PPG−PTMG Ternary Polyol-Based Waterborne Polyurethanes. Ind Eng Chem Res 1997;36:1614-21. [13] Okkema AZ, Yu XH, Cooper SL. Physical and blood contacting characteristics of propylsulphonate graftedbiome. Biomaterials 1991;12:3-12. [14] Okkema AZ, Visser SA, Cooper SL. Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. J Biomed Mater Res 1991;25:1371-95. [15] Silver JH, Marchant JW, Cooper SL. Effect of polyoltype on the physical properties and thrombogenicity of sulfonate-containing polyurethanes. J Biomed Mater Res 1993;27:1443-57. [16] Han DK, Jeong SY, Kim YH. Negative cilia concept for thromboresistance: Synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. J Biomed Mater Res 1991;25:561-75. [17] Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research Part A. 2000;52:662-68. [18] Sondi I, Salopek-Sondi B. Silver nanoparticles as an antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface. 2004;275:177 [19] Kim JW, Lee JE, Kim SJ, Lee JS, Ryu JH, Kim J, Han SH, Chang IS, Suh KD. Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer 2004;45: 4741-47. [20] Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and Immunological Response of Gold and Silver Nanoparticles of Different Sizes. Small, in press at 2009. [21] 呂晃志 揭開抗菌、防腐的神奇面紗─奈米銀 (Nano Silver) 逢甲大學奈米科技研究中心,2007 [22] Chou CW, Hsu SH, Chang H, Tseng SM, Lin HR. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polymer Degradation and Stability 2006;91:1017-24. [23] Hung HS, Wu CC, Chien S, Hsu SH. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials 2009;30:1502-11. [24] Hung HS, Hsu SH. The response of endothelial cells to polymer surface composed of nanometric micelles. New Biotechnology 2009;25:235-43. [25] Hung HS, Tang CM, Tseng HJ. Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A 2006;79:759-70. [26] Hsu SH, Tang CM, Tseng HJ. Biostability and biocompatibility of poly(ester urethane)–gold nanocomposites. Acta Biomater. 2008; 4:1797-1808. [27] Hsu SH, Tang CM, Tseng HJ. Gold Nanoparticles Induce Surface Morphological Transformation in Polyurethane and Affect the Cellular Response. Biomacromolecules. 2008;9:241-48. [28] Vane JR, Anggard EZ, Botting RM. Regulatory functions of the Vascular endothelium. The New England Journal of Medicine 1990; 323: 27-36 [29] Virchow R, Chance R. Cell Pathology: As Based Upon Physiological and Pathological Histology. New York: Dover 1957;239. [30] Povlishock JT, Rosenblum WI. Injury of brain microvessels with a helium-neon laser and Evans blue can elicit local platelet aggregation without endothelial denudation. Arch Pathol Lab Med 1987;111: 415-21. [31] Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332: 411-15. [32] Palmer RM, Ferrige AG, Moncada S. Release of nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524-26. [33] Turner RR, Beckstead JH, Warnke RA. Endothelial cell phenotypic diversity. Am J Clin Pathol 1987;87:569-75. [34] Vane JR, Botting RM. Mediators from the endothelial cell and their participation in inflammation. International Journal of Tissue Reactions 1994;16:19-49 [35] Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005;88:412-19. [36] Hussain SM, Hess KL, Gearhart JM, Geiss KT and Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005;19: 975-83. [37] Hussain SM, Javorina A, Schrand AM, Duhart H, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 2006;92:456-63. [38] Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA2005;102:9469-74. [39] Jun SK, Eunye K, Kyeong NY, Hu JL, So HK, Young KP, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 2005;3:95-101. [40] Martı′nez-Castan˜o′n GA, Nin˜o-Martı′nez N, Martı′nez- Gutierrez F, Martı′nez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J of Nanopart Res 2008; 10:1343-48. [41] Nakamae K, Nishino T, Gotoh Y, Matsui R, Nagura M. Relationships between interfacial properties and structure of segmented polyurethane having functional groups. International of Journal of Adhesion & Adhesive 1999;19:345-51 [42] Lelah MD, Cooper SL, Polyurethane in Medicine, 1986 [43] Hung HS, Hsu SH. Biological performances of poly(ether)urethane– silver nanocomposites. Nanotechnology 2007;18:475101.
聚胺酯為應用很廣泛之高分子,在生醫領域,由於材料本身生物相容性很好,亦因血液相容性佳,而可以作為人工小血管的材料。然而聚胺酯混摻入奈米金、銀之後,會改變其兩相界面,使得生物相容性、以及細胞貼附、遷移等性質提升,可作為探討聚胺酯微相結構與生物相容性關係的研究工具與模型,亦可用來探討聚胺酯生物相容性與生物穩定性之間的關係。於本實驗中,藉由混摻不同尺寸大小之奈米銀粒子,並混摻不需交聯劑之水性聚胺酯,分別探討其物理性質以及生物相容性。從物性中,藉由混摻會造成表面微相分離,且會增加其熱性質,藉由牛頸動脈內皮細胞(BEC)之貼附以及增生實驗發現藉由混摻奈米銀會增加其增生數量,並且減少血小板吸附,並微量抑制發炎反應,至於各尺寸最佳之配方相互比較,以中尺寸奈米銀粒子60 ppm混摻在所選之聚胺酯中,會有最佳之細胞相容性。對於大腸桿菌以及金黃葡萄球菌,添加奈米銀粒子,明顯提昇其抗菌能力。對於三種不同尺寸,中尺寸奈米銀粒子(5~7 nm)混摻聚胺酯濃度為60 ppm在生物相容性以及抗菌性均表現最佳。

PU is widely used in biomedical applications because of good biocompatibility and mechanical properties. When polyetherurethane (PEU) is mixed with gold nanoparticles or silver nanoparticles, the two-phase interface in the microstructure of PEU is changed. The subsequent changes in the biocompatibility, cell adhesion and cell migration are also observed. In this study, different concentrations of silver nanoparticles (nano Ag) (in three different sizes) were added into a waterborne PEU that did not need a crosslinking agent. The changes in physicochemical characteristics and biocompatibility of the PEU-Ag nanocomposites were analyzed. With the addition of nano Ag, the extent of surface microphase separation of PEU increased and the bulk thermal properties were enhanced. PEU-Ag had better cellular proliferation and reduced platelet and monocyte activation. PEU-Ag also showed antibacterial activities toward E. coli and S. aureus. Overall, the nanocomposite with 60 ppm of medium-sized Ag (5~7 nm) had the best biocompatibility and antibacterial properties.
其他識別: U0005-1408200901163400
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.