Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3745
標題: 外加應力對錫鬚生長及銲點界面反應之影響
Effects of mechanically applied stress on tin whisker growth and interfacial reactions at solder joints
作者: 陳郁仁
Chen, Yu-Jen
關鍵字: whisker;錫鬚;hillock;interfacial reaction;錫/銅介面反應
出版社: 化學工程學系所
引用: 1. C. C. Wei, P. C. Liu, C. Chen, J. C. B. Lee, and I. P. Wang, “Relieving Sn whisker growth driven by oxidation on Cu leadframe by annealing and reflowing treatments”, Journal of Applied Physics, Vol. 102, pp. 043521-1-043521-7 (2007). 2. J. Cheng, S. Chen, P. Vianco, and J. C. M. Li, “A new mechanism for hillock over electrodeposited thin tin film”, IEEE Electronic Components and Technology Conference, pp. 472-477 (2008). 3. 張道智、張喬雲、游善溥,無鉛組裝技術現況與趨勢,電子工業研究所,工業技術研究院,p1-19 (2001)。 4. S. K. Lin, Y. Yorikado, J. Jiang, K. S. Jim, K. Suganuma, and S. W. Chen, “Mechanical deformation-induced Sn whisker growth on electroplated films in the advanced flexible electronic packaging”, Journal of Electronic Materials, Vol. 22(7), pp. 1975-1986 (2007). 5. H. Wang, F. Gao, X. Ma, and Y. Qian, “Reactive wetting of Cu and Cu6Sn5/Cu3Sn/Cu substrates using wetting balance”, Scripta Materialia, Vol. 55, pp. 823-826 (2006). 6. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage, website http://nepp.nasa.gov/whisker/ 2006. 7. S. H. Liu, C. Chen, P. C. Liu, and T. Chou, “Tin whisker growth driven by electrical currents”, Journal of Applied Physics, Vol. 95(12), pp. 7742-7747 (2004). 8. 林定皓,印刷電路板電子組裝技術概述,台灣電路板產業學院 (2006)。 9. 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,高立圖書 (2004)。 10. http://www.dyfenco.com/_php_module/upload/TC_File/TC_20080527093756.pdf. 11. K. N. Tu and J. C. M. Li, “Spontaneous whisker growth on lead-free solder finishes”, Materials Science and Engineering A, Vol. 409, pp. 131-139 (2005). 12. K. N. Tu, “Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reaction”, Physical Review B, Vol.49, pp. 2030-2034 (1994). 13. J. B. LeBret and M. G. Norton, “Electron microscopy study of tin whisker growth”, Journal of Materials Research, Vol. 18(3), pp. 585-593 (2003). 14. G. T. T. Sheng, C. F. Hu, W. J. Choi, K. N. Tu, Y. Y. Bong, and L. Nguyen, “Tin whiskers studied by focused ion beam imaging and transmission electron microscopy”, Journal of Applied Physics, Vol. 92(1), pp.64-69 (2002). 15. K. W. Moon, C. E. Johnson, M. E. Williams, O. Kongstein, G. R. Stafford, C. A. Handwerker, and W. J. Boettinger, “Observe correlation of Sn oxide film to Sn whisker growth in Sn-Cu electrodeposit for Pb-free solders”, Journal of Electronic Materials, Vol. 34(9), pp. 31-33 (2005). 16. K. S. Kim, C. H. Yu, and J. M. Yang, “Behavior of tin whisker formation on lead-free solder finish”, Thin Solid Films, Vol. 504, pp. 350-354 (2006). 17. H. J. Kao, W. C. Wu, S. T. Tsai, and C. Y. Liu, “Effect of Cu additives on Sn whisker formation of Sn(Cu) finishes”, Journal of Electronic Materials, Vol. 35(10), pp. 1885-1891 (2006). 18. M. E. Williams, K. -W. Moon W. J. Boettinger, D. Josell, and A. D. Deal, “Hillock and whisker growth on Sn and SnCu electrodeposits on a substrate not forming interfacial intermetallic compounds”, Journal of Electronic Materials, Vol. 36(3), pp. 214-219 (2007). 19. T. H. Chuang, “Rapid whisker growth on the surface of Sn-3Ag-0.5Cu-1.0Ce”, Scripta Materialia, Vol. 55, pp. 983-986 (2006). 20. T. H. Chuang, H. J. Lin, and C. C. Chi, “Rapid growth of tin whisker on the surface of Sn-6.6Lu alloy”, Scripta Materialia, Vol. 56, pp. 45-48 (2007). 21. S. K. Lin, Y. Yorikado, J. Jiang, K. S. Jim, K. Suganuma, S. W. Chen, M. Tsujimoto, and I. Yanada, “Microstructure development of mechanical -deformation-induced Sn whiskers”, Journal of Electronic Materials, Vol. 36(12), pp. 1732-1734 (2007). 22. 林文山、楊文彬,覆晶封裝底部封膠技術之研究,國立成功大學航空太空工程研究所碩士論文 (2003)。 23. 盧慶儒,覆晶封裝製程技術之挑戰,DIGITIME科技網。 24. Official Journal of the European Union, L37, P. 19 (2003). 25. 汪建民,材料分析,p673-700 (2005)。 26. J. W. Jang, C. Y. Liu, P. G. Kim, K. N. Tu, A. K. Mal, and D. R. Frear, “Interfacial morphology and shear deformation of flip solder joints”, Journal of Materials Research, Vol. 15(8), pp. 1679-1687 (2000). 27. B. W. Lee, J. Y. Kim, and D. Kwon, “Stress-strain curve of flip-chip solder balls based on finite-element modeling of thermal displacements measured by electronic speckle pattern interferometry”, Journal of Electronic Materials, Vol. 32(11), pp. 1322-1329 (2003). 28. S. L. Cheng, H. M. Lo, L. W. Cheng, S. M. Chang , and L. J. Chen, “Effects of stress on the interfacial reactions of metal thin films on (0 0 1)”, Thin Solid Films, Vol. 424, pp. 33-39 (2003). 29. N. Karpe, K. Kyllesbech Larsen, and J. Bǿttiger, “Enhanced interdiffusion in amorphous nickel-zirconium thin films under tensile strain”, Philosophical Magazine B: Physics of of Condensed Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties, Vol. 66(4), pp. 507-512 (1992). 30. P. Gergaud, M. Megdiche, O. Thomas, and B. Chenevier, “Influence of Si substrate orientation on stress development in Pd silicide films grown by solid-state reaction”, Applied Physics Letters, Vol. 83(7), pp. 1334-1336 (2003). 31. J. Y. Song, Jin. Yu, and T. Y. Lee, “Effect of reactive diffusion on stress evolution in Cu-Sn films”, Scripta Materialia, Vol. 51, pp. 167-170 (2004). 32. J. Y. Song and Jin Yu, “Effect of phosphorous content on phase transformation induced stress in Sn/Ni(P)”, Journal of Materials Research, Vol. 21(9), pp. 2261-2269 (2006). 33. J. Y. Huh and S. J. Moon, “Effect of elastic stresses on solid-state amorphization of Zr/Co multilayers”, Thin Solid Films, Vol. 377-378, pp. 611-616 (2000). 34. S. L. Ngoh, W. Zhou, and J. H. L. Pang, “Effect of stress state on growth of interfacial intermetallic compounds between Sn-Ag-Cu solder amd Cu substrates coated with electroless Ni immersion Ag”, Journal of Electronic Materials, Vol. 37(12), pp. 1843-1850 (2008). 35. S. Bader, W. Gust, and H. Hieber, “Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems”, Acta metal. Mater., Vol. 43(1), pp. 329-337 (1995). 36. J. Görlich, G. Schmitz, and K. N. Tu, “On the mechanism of the binary Cu/Sn solder reaction”, Applied Physics Letters, Vol. 86(5), pp. 053106 (2005). 37. K. N. Tu and R. D. Thompson, “Kinetics of interfacial reaction in bimetallic copper-tin thin films”, Acta metal., Vol. 30, pp. 947-952 (1982). 38. Z. Mei, A. J. Sunwoo, and J. W. Morris. Jr., “Analysis of low-temperature intermetallic growth in copper-tin diffusion couples”, Metallurgical Transaction A, Vol. 23, pp. 857-864 (1992). 39. K. N. Tu, T. Y. Lee, J. W. Jang, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting reaction versus solid state aging of eutectic SnPb on Cu”, Journal of Applied Physics, Vol. 89(9), pp. 4843-4849 (2001). 40. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kiviahti, “Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders(Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, Journal of Materials Research, Vol. 17(2), pp. 291-301 (2002). 41. K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders”, Journal of applied physics, Vol. 93(3), pp. 1335-1353 (2003). 42. S. W. Chen, S. H. Wu, and S. W. Lee, “Interfacial reactions in the Sn-(Cu)/Ni, Sn-(Ni)/Cu, and Sn/(Cu,Ni) systems”, Journal of Electronic Materials, Vol. 32(11), pp. 1188-1194 (2003). 43. C. M. Chuang and K. L. Lin, “Effect of microelements addition on the interfacial reaction between Sn-Ag-Cu solders and the Cu substrate”, Journal of Electronic Materials, Vol. 32(12), pp. 1426-1431 (2003). 44. J. S. Ha, T. S. Oh, and K. N. Tu, “Effect of supersaturation of Cu on reaction and intermetallic compound formation between Sn-Cu solder thin film metallization”, Journal of Materials Research, Vol. 18(9), pp. 2109-2114 (2004). 45. T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Growth behavior of compound layers Sn/Cu/Sn diffusion couples during annealing at 433-473K”, Materials Science and Engineering A, Vol. 396, pp. 115-123 (2005). 46. F. Gao. and T. Takemoto., “Effects of addition participation in the interfacial reaction on the growth patterns of Cu6Sn5-based IMCs during reflow process”, Journal of Alloys and Compounds, Vol. 421, pp. 283-288 (2006). 47. M. H. Lu and K. C. Hsieh, “Sn-Cu intermetallic grain morphology related to Sn layer thickness”, Journal of Electronic Materials, Vol. 36(11), pp. 1448-1454 (2007). 48. C. W. Chang, S. C. Yang, C. T. Tu, and C. R. Kao, “Cross-interaction between Ni and Cu across Sn layers with different thickness”, Journal of Electronic Materials, Vol. 36(11), pp. 1455-1461 (2007). 49. L. Xu, J. H. L. Pang, and K. N. Tu, “Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints”, Applied Physics Letters, Vol. 89, pp.221909 (2006).
摘要: 
半導體封裝過程中,銅導線架上廣泛地利用電鍍錫作為表面處理層,因為在導線架腳表面電鍍錫可以增加架腳的潤濕性及避免氧化,有助於架腳與印刷電鍍板(printed circuit board, PCB)的接合,但錫層表面會自發性成長錫鬚,導線架腳會因錫鬚成長相連接造成短路,降低電子產品的可靠度。然而在覆晶產品製作過程或使用期間,由於材料本身性質與外在環境的影響,會造成應力(stress)之產生。矽晶片與薄膜間由於熱膨脹係數(coefficient of thermal expansion, CTE)差異較大,容易造成銲點熱應力之生成,而應力之生成可能會影響覆晶及表面處理層在許多可靠度之表現。本研究設計黃銅模具,模擬矽晶片基材與鍍膜間熱膨脹係數差異所造成的應力對於錫鬚生長及錫/銅界面反應之影響。本研究主要在銅/錫薄膜上加入應力及溫度之因素,進而探討對錫鬚生長及錫/銅界面反應之影響。
實驗結果發現有無應力影響會導致錫鬚生長數量、速度及生長方向的差異。在室溫受外加拉伸應力影響下,不受應力及受拉伸應力較大區域的錫鬚生長為隨機方向生長,由錫膜表面朝上且沒有特定生長方向。受拉伸應力較小區域的錫鬚有特定生長方向,剛從錫膜表面冒出錫芽後就近乎平行於錫膜表面朝著特定方向生長。受拉伸應力的錫鬚生長速度較無應力慢且數量較少、平均長度較短,推測外加拉伸應力可將電鍍錫產生的壓縮應力加以釋放,緩和錫鬚成長,其中錫膜所受到外加拉伸應力越大效果越顯著,所以導線架腳的設計可以考量施以外加拉伸應力藉以緩和錫鬚生長。
於高溫熱處理研究中,將樣品置於80℃與150℃下進行熱處理30天~80天,溫度對於錫鬚成長也有很大的影響,在高溫80 ℃及150 ℃錫鬚的型態由細絲狀(whisker)轉變為小丘狀(hillock)。但在高溫熱處理下外加拉伸應力對於小丘狀錫鬚的成長影響不如室溫下細絲狀錫鬚那麼顯著。
熱處理可以抑制細絲狀錫鬚生長,型態轉變為小丘狀錫鬚,而小丘狀錫鬚大小約為直徑5μm的凸塊,不像細絲狀錫鬚可以持續成長達數十或數百微米,可以利用熱處理程序避免導線架上鍍錫造成細絲狀錫鬚生長而造成精密電子產品短路。
錫/銅界面反應中,(45μm Sn/10μm Cu)在高溫熱處理下150℃、170℃、200℃下介金屬化合物(intermetallic compound, IMC)隨著時間增長而增厚,先生成Cu6Sn5再生成Cu3Sn。受拉伸應力及壓縮應力在相同時間下IMC生長速率均較不受應力快速,所以整體的IMC(Cu6Sn5+Cu3Sn)也較厚。IMC生長速率為受壓縮應力最快,受拉伸應力其次,不受應力生長速率最慢,所以受到外加壓縮及拉伸應力均會促進IMC生長。

In this study, for simplicity, externally applied tensile stress was exerted on a Sn thin film electrodeposited on a Cu substrate using three-point bending to simulate the condition of a Sn thin film subjecting to a tensile stress due to CTE (coefficient of thermal expansion) effect. To perform the bending experiments, a specifically designed three-point bending module made of brass was used to bend the samples.
Filamentary Sn whiskers were formed on an electrodeposited Sn thin film aged at room temperature. Sn whisker growth was significantly mitigated on the Sn thin film subjected to a tensile stress in bending. This mitigation growth suggests that part of the compressive stress in the Sn thin film was neutralized by the mechanically applied tensile stress. The growth orientation of Sn whiskers formed on the high tensile stress region was random but directional on the low tensile stress region. A potential mechanism was proposed to explain the directional growth of Sn whiskers. The vacancy concentration at the high tensile stress region is higher than that at the low tensile stress region. Driven by the vacancy concentration gradient, the Sn atoms migrate from the low tensile stress region to the high tensile stress region, making the Sn whiskers grow in a preferential orientation.
No Sn whisker growth took place as the aging temperature was raised to 80 and 150℃, while Sn hillocks grew instead. More surprisingly, no noticeable Sn hillock(or whisker) growth was observed on the tensily-bent Sn film aged at 80 and 150℃, indicating that the combined effects of tensile stress and aging can effectively inhibit the Sn hillock(or whisker) growth.
Effects of applied stresses on the copper/tin thin film interfacial reaction were investigated. A three-point bending was used and in-plane bending induced compressive and tensile stresses. The sample was solid-state aged at temperatures of 150℃, 170℃ and 200℃ for 2days to 17days. The results revealed that mechanically applied stress can influence the IMC (intermetallic compound) growth behavior. Both compressive and tensile stresses can accelerate the IMC growth, and the IMC thickness under compressive stress is the thickest.
URI: http://hdl.handle.net/11455/3745
其他識別: U0005-1507200914342700
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.