Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3754
標題: 使用交替合成策略由4-(3,3-diethyl-2,4-dioxoazetidin-1-yl)benzoyl chloride中間體合成精準硬段鏈延長劑並於聚胺酯之應用
Iterative synthesis of precise hard-segment extenders and their applications in polyurethane using 4-(3,3-diethyl-2,4-dioxoazetidin-1-yl)benzoyl chloride as the intermediate.
作者: 蘇哲民
Su, Je-Min
關鍵字: supramolecule;超分子;precise chain length;extender;polyurethane;精準長度;鏈延長劑;聚胺酯
出版社: 化學工程學系所
引用: 1. Cooper, S. L.; Tobolsky, A. V. J. Appl. Polym. Sci. 1966, 10, 1837-1844. 2. Ping, P.; Wang, W.; Chen, X.; Jing, X. Biomacromolecules 2005, 6, 587-592. 3. Heijkants, R. G. J. C.; Calck, R. V. V.; Tienen, T. G. V.; Groot, J. H. D.; Buma, P.; Pennings, A. J.; Veth, R. P. H.; Schouten, A. J. Biomaterials 2005, 26, 4219-4228. 4. Chen, T. K.; Shieh, T. S.; Chui, J. Y. Macromolecules 1998, 31, 1312-1320. 5. Xue, L.; Dai, S.; Li, Z. Macromolecules 2009, 42, 964- 972. 6. Merlin, D. L.; Sivasankar, B. European Polymer Journal 2009, 45, 165-170. 7. Kim, B. K.; Lee, S. Y.; Xu, M. Polymer 1996, 26, 5781- 5793. 8. Chen, X. D.; Zhou, N. Q.; Zhang, H. China Plastics Industry 2008, 36, 8-11. 9. Sreenivasan, K. European Polymer Journal 1991, 27, 811- 813. 10.Crawford, D. M.; Bass, R. G.; Haas, T. W. Thermochimica Acta 1998, 323, 53-63. 11. Festel, G. Polymer Bulletin 2004, 6, 42-61. 12. Kojio, K.; Fukumaru, T.; Furukawa, M. Macromolecules 2004, 37, 3287-3291. 13. Fernandez, A. M.; Abraham, G. A.; Valentin, J. L.; Roman, J. S. Polymer 2006, 47, 785-798. 14. Caracciolo, P. C.; Buffa, F.; Abraham, G. A. J Mater Sci 2009, 20, 145-155. 15. Azzam, R. A.; Mohamed, S. K.; Tol, R.; Everaert, V.; Reynaers, H.; Goderis, B. Polymer Degradation and Stability 2007, 92, 1316-1325. 16. Guelcher, S. A.; Gallagher, K. M.; Didier, J. E.; Klinedinst, D. B.; Doctor, J. S.; Goldstein, A. S.; Wilkes, G. L.; Beckman, E. J.; Hollinger, J. O. Acta Biomaterialia 2005, 1, 471-484. 17. Tatai, L.; Moore, T. G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, P. A. Biomaterials 2007, 28, 5407-5417. 18. Sriram, V.; Sundar, S.; Dattathereyan, A.; Radhakrishnan, G. Reactive & Functional Polymers 2005, 64, 25-34. 19. Ho, K. S.; Hsieh, K. H.; Huang, S. K.; Hsieh, T. H. Synthetic Metals 1999, 107, 65-73. 20. Pissis, P.; Kanapitsas, A.; Savelyev, Y. V.; Akhranovich, E. R.; Privalko, E. G.; Privalko, V. P. Polymer 1998, 39, 3431-3435. 21. Zhang, S.; Ren, Z.; He, S.; Zhu, Y.; Zhu, C. Spectrochimica Acta Part A 2007, 66, 188-193. 22. Chun, B. C.; Cho, T. K.; Chung, Y. C. European Polymer Journal 2006, 42, 3367-3373. 23. Savelyev, Y. V.; Akhranovich, E. R.; Grekov, A. P.; Privalko, E. G.; Korskanov, V. V.; Shtompel, V. I.; Privalko, V. P.; Pissis, P.; Kanapitsas, A. Polymer 1998, 39, 3425-3429. 24. Blackwell, J.; Nagarajan, M. R.; Hoitink, T. B. Polymer 1982, 23, 950-956. 25. Schuur, M. V. D.; Feijen, J.; Gaymans, R. J. Polymer 2005, 46, 4584-4595. 26. Schuur, M. V. D.; Noordover, B.; Gaymans, R. J. Polymer 2006, 47, 1091-1100. 27. Harrell, L. L., Jr Macromolecules 1969, 2, 607-612. 28. Kuo, M. C.; Jeng, R. J.; Su, W. C.; Dai, S. A. Macromolecules 2008, 41, 682-690. 郭明杰. 國立中興大學化學工程學系碩士論文, 2004. 29. Washio, I.; Shibasaki, Y.; Ueda, M. Macromolecules 2005, 38, 2237-2246. 30. Staudinger, H.; Gohring, O.; Scholler, M. Chem. Ber. 1914, 47, 40-48. 31. Ebnother, A.; Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; R. Suess, A. V. Helv. Chim. Acta 1959, 42, 918-955. 32. Poshkus, A. C.; Herweh, J. E. J. Org. Chem. 1965, 30, 2466-2469. 33. Martin, J. C.; Burpitt, R. D.; Gott, P. G.; Harris, M.; Meen, R. H. J. Org. Chem. 1971, 36, 2205-2210. 34. 吳美儀. 國立中興大學化學工程學系碩士論文, 2003. 35. Imai, Y.; Hirukawa, H. Polym. J. 1973, 4, 93-99. 36. 陳衍甫. 國立中興大學化學工程學系碩士論文, 2001. 37. 陳志平. 國立中興大學化學工程學系博士論文, 2004. 38. McMurry J. Organic Chemistry. sixth edition. Thomson, 777-788. 39. 童彥宸. 國立中興大學化學工程學系碩士論文, 2007.
摘要: 
本研究以垂手可得的p-tolyl isocyanate為起始物,製備出具有兩種不同官能基反應性的中間體4-(3,3-diethyl-2,4-dioxoaetidin-1-yl)benzoyl chloride (簡稱:DEDA-BC),作為本研究之交替合成的基本中間體。合成時先將其中p-tolyl isocyanate異氰酸鹽與diethyl ketene經由環化加成反應生成3,3-diethyl-1-p-tolylazetidine-2,4-diones(簡稱:DETAD)中間體,然後再將其中的甲基苯經自我氧化反應形成其對應之苯酸,最後將此苯酸經由氯化亞硫醯(thionyl chloride)反應形成DEDA-BC,其每一合成步驟均有極高的產率,由此三步法合成之DEDA-BC前後產率為66%。

利用DEDA-BC中醯氯(acid chloride)和 azetine-2,4-dione反應性的不同,使用一步接著一步交替合成法,藉由4,4’-methylenedianiline (4,4’-MDA)與DEDA-BC的acid chloride基反應,而後再以4-aminobenzyl amine與前反應產物的azetine-2,4-dione基反應,形成具有azetidine-2,4-dione和胺(amine)二種不同官能基結尾及各自三種世代長度的中間體和鏈延長劑。藉由交替合成的DEDA-BC所合成出azetidine-2,4-dione結尾的反應中間體(DG005,、DG015和DG025)以及胺(amine)結尾的鏈延長劑(DG010,、DG20和DG030),都具有高產率、高純度和低分子量分佈(≦1.12)的特點。有趣地,這六個中間體隨著分子鏈的長度增加其熱穩定性也隨之增加。

利用前面所製備三個不同世代之胺官能基結尾的鏈延長劑,分別有系統的與二苯甲基二異氰酸鹽(4,4’-MDI)和聚四亞甲基醚二醇(Polytetramethylene (簡稱:PTMEG),分子量:2000 g/mol)所製備的異氰酸鹽結尾的預聚物高分子去製備成聚胺酯彈性體,目的是要完整的了解硬鏈段分子鏈長度與聚胺酯彈性體之間的關係。經由本研究實驗設計上的謹慎構思以及分別製得的聚胺酯彈性體性質可以得知,以DG010(分子量:929 g/mol)第一世代鏈延長劑在硬鏈段鏈含量為35%的配方中所製備出的聚胺酯彈性體,在性質上具有最佳特性,其抗拉強度為58.9 MPa、伸長率為411%和熱裂解溫度為322℃。導致上述聚胺酯高分子有最佳物性之主要原因乃是硬鏈段之結晶所造成分子間相分離現象。

總結,本研究已成功合成雙官能基中間體(DEDA-BC)並且運用於反覆精準的交替合成法中。在此同時,也利用精準硬鏈段長度胺官能基結尾的鏈延長劑去了解與聚胺酯彈性體在結構上的關係。

A new route for making the key dual-functional intermediate for our iterative study, 4-(3,3-diethyl-2,4-dioxoaetidin-1-yl)benzoyl chloride (DEDA-BC), has been accomplished starting from readily available p-tolyl isocyanate as the starting material. After initial cycloaddition reaction of the isocyanate with diethyl ketene in formation of its corresponding 3,3-diethyl-1-p-tolylazetidine-2,4-diones(DETAD), the tolyl group of the adduct was auto-oxidized into the corresponding benzoic acid. Finally, the resulting p-substituted benzoic acid was then converted into DEDA-BC with thionyl chloride with high yields for each step in an overall yield of 66% for three steps.
Because of the distinctive reactivity difference between acid chloride and the azetine-2,4-dione group in DEDA-BC, we carried out step-by-step selective drivatizations of DEDA-BC alternatively with 4,4'-methylenedianiline (4,4'-MDA) toward acid chloride group of DEDA-BC, and 4-aminobenzyl amine toward azetindine-2,4-dione group to form three generations of azetidine-2,4-dione intermediates and amine-extenders. In all of our iterative syntheses, high yields, high purities and low dipersities (≦1.12) of all three generation azetidine-2,4-dione intermediates, DG005, DG015, and DG025, and all three generations of amine-extenders, DG010, DG020,and DG030 have been prepared indicative of its versatility of DEDA-BC. Interestingly, there are increasing thermal stability trend associated with increasing chain-length for these six prepared intermediates.
With three generations of amine-extenders in our hand, we have carried out their systematic preparations of polyurethanes (PUs) with the isocyanate-prepolymers based on 4,4'-methylene-dipehnylene-diisocyanate and 2000 molecular weight PTMEG with the aim of establishing PU polymer performance-hard segment chain-length relationships. Through our carefully screening of formulations and product properties, our research establishes that the PU polymer prepared with DG010 (with Mol. Wt of 929 g/mol) at the hard-segment content of about 35% exhibits the best overall elastomeric performances with its flex strength of 58.9 MPa, elongation of 411%, and Td at 322 C. The phase-segregation phenomenon and the facility of hard-segment crystallization appear to be the decisive contributing factors in influencing the performance of PU.
In conclusion, our study has successfully synthesized a dual function intermediate, DEDA-BC, for the precision iterative synthesis. In the meantime, precise chain-length hard-segment amines prepared have been utilized to reveal important structural-performance relationships for elastomeric PUs.
URI: http://hdl.handle.net/11455/3754
其他識別: U0005-1808200916323300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.