Please use this identifier to cite or link to this item:
標題: 二氧化鈦/醋酸纖維混成薄膜於直接滲透程序之應用
Titanium dioxide/Cellulose acetate hybrid membrane for forward osmosis
作者: 蘇嘉俊
Su, Chia-Chun
關鍵字: forward osmosis;直接滲透;cellulose acetate;titanium dioxide;hybrid;醋酸纖維;二氧化鈦;摻混
出版社: 化學工程學系所
引用: [1] 陳瑞鈴,“水與綠的對話-節水與綠建築 綠建築之雨水有效利用”,內政部建築研究所,2005,1 [2] A. D. Khawaji, I. K. Kutubkhanah, J.-M. Wie, “Advances in seawater desalination technologies”, Desalination, 2008, 221, 47–69 [3] A. A. Mesa, C. M. Gmez, R. U. Azpitarte, “Energy saving and desalination of water”, Desalination, 1996, 108 ,43-50 [4] S. J. Ahn, C. J. Lee, Y. Jung, C. Han, E. S. Yoona, G. Lee, “Fault diagnosis of the multi-stage flash desalination process based on signed digraph and dynamic partial least square”, Desalination, 2008, 228, 68–83 [5] L. Garcia-Rodriguez, “Seawater desalination driven by renewable energies: a review”, Desalination , 2002, 143, 103-113 [6] B. Bandura-Zalska, P. Dydo, M. Turek, “Desalination of boron-containing wastewater at no boron transport” , Desalination, 2009, 241, 133-137 [7] 許永倉,“電透析膜控制電導度技術介紹” ,力洪實業股份有限公司,2003,9 [8] T. Y. Cath, A. E. Childress, M. Elimelech, “A novel ammonia-carbon dioxide forward (direct) osmosis desalination process”, Desalination, 2005, 174, 1–11 [9] J. R. McCutcheon, R. L. McGinnis, M. Elimelech, “Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance”, Journal of Membrane Science, 2006, 278, 114–123 [10] G.W. Batchelder, “Process for the Demineralization of Water”, US Patent 3,171,799 1965 [11] D.N. Glew, “Process for Liquid Recovery and Solution Concentration”, US Patent 3,216,930 1965 [12] B.S. Frank,“Desalination of Sea Water”, US Patent 3,670,897 1972 [13] R.E. Kravath and J.A. Davis, “Desalination of seawater by direct osmosis”, Desalination, 1975, 16, 151–155. [14] K. Stache, “Apparatus for Transforming Sea Water, Brackish Water, Polluted Water or the Like into a Nutritious Drink by Means of Osmosis”, US Patent 4,879,030 1989 [15] J. Yaeli, “Method and Apparatus for Processing Liquid Solutions of Suspensions Particularly Useful in the Desalination of Saline Water”, US Patent 5,098,575 1992 [16] Kesting, R. E.,“Synthetic polymeric membranes : a structural perspective”, New York : J. Wiley., 1985 [17] X. Cao, J. Ma, X. Shi, Z. Ren,“Effect of TiO2 nanoparticle size on the performance of PVDF membrane”, Applied Surface Science, 2006, 253, 2003–2010 [18] G. Wu, S. Gan, L. Cui, Y. Xu,“Preparation and characterization of PES/TiO2 composite membranes”, Applied Surface Science, 2008, 254, 7080–7086 [19] T.-H. Bae, T.-M. Tak,“Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system”, Journal of Membrane Science, 2005, 266, 1–5 [20] N. Agoudjil, T. Benkacem,“Synthesis of porous titanium dioxide membranes”, Desalination, 2007, 206, 531–537 [21] L. Qi, D. P. Birnie. III,“Templated titania films with meso- and macroporosities”, Materials Letters, 2007, 61, 2191–2194 [22] M.-L. Luo, J.-Q. Zhao, W. Tang, C.-S. Pu,“Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles”, Applied Surface Science, 2005, 249, 76–84 [23] U. Aust, S. Benfer, M. Dietze, A. Rost, G. Tomandl,“Development of microporous ceramic membranes in the system TiO2/ZrO2”, Journal of Membrane Science, 2006, 281, 463 – 471 [24] J.-D. Jeon, M.-J. Kim, S.-Y. Kwak,“Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes”, Journal of Power Sources, 2006, 162, 1304–1311 [25] M. Sairam, M. B. Patil, R. S. Veerapur, S. A. Patil, T. M. Aminabhavi,“Novel dense poly(vinyl alcohol)–TiO2 mixed matrix membranes for pervaporation separation of water–isopropanol mixtures at 30◦C”, Journal of Membrane Science, 2006, 281, 95–102 [26] H. Choi, E. Stathatos, D. D. Dionysiou,“Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems”, Desalination, 2007, 202, 199–206 [27] Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li,“The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane”, Journal of Membrane Science, 2007, 288, 231–238 [28] M. D. VYAS, R. C. MODY, I. C. MODY,“Development and Characterization of Cellulose Acetate Benzoate Flat Osmotic Membranes”, Journal of Applied Polymer Science, 1994, Vol. 52, 1031-1035 [29] A. Shanbhag, B. Barclay, J. Koziara, P. Shivanand,“Application of cellulose acetate butyrate-based membrane for osmotic drug delivery”, Cellulose, 2007, 14, 65 –71 [30] O. Kuttowy , S. Sourirajan,“Cellulose acetate ultrafiltration membranes”, Journal of Application Polymer, 1975, 19, 1449–1460. [31] A. Nagendran, D. Lawrence Arockiasamy, D. Mohan,“Cellulose Acetate and Polyetherimide Blend Ultrafiltration Membranes, I: Preparation, Characterization, and Application”, Materials and Manufacturing Processes, 2008, 23, 311–319 [32] M. Sivakumar, R. Malaisamy, C.J. Sajitha, D. Mohan, V. Mohan, R. Rangarajan,“Preparation and performance of cellulose acetate–polyurethane blend membranes and their applications – II”, Journal of Membrane Science, 2000, 169, 215–228 [33] M. Sivakumar, R. Malaisamy, C.J. Sajitha, D. Mohan , V. Mohan, R. Rangarajan,“Ultrafiltration applications of cellulose acetate–polyurethane blend membranes”, European Polymer Journal, 1999, 35, 1647–1651
本研究以醋酸纖維(cellulose Acetate, CA)與二氧化鈦(titanium dioxide, TiO2)於不同比例摻混製備薄膜。製備過程中,以丙酮/NMP/DMF比例為15:0.5:0.5之混合液為混合溶劑,厚度220μm之刮刀於玻璃平板上製備二氧化鈦/醋酸纖維參混膜。本研究利用ATR-FTIR與XRD驗證參混膜中二氧化鈦之存在、TGA測量二氧化鈦所佔比例、拉力測試觀察參混二氧化鈦後拉力增加的幅度。隨著二氧化鈦比例增加,薄膜機械強度也隨之上升。在直接滲透應用方面,由於刮出來的薄膜厚度隨二氧化鈦比例提高而增加,造成薄膜質傳阻力增加,薄膜水通量上升趨勢為先高後低。薄膜水通量以摻混10%二氧化鈦為最高。

In this study, cellulose acetate (CA)/titanium dioxide (TiO2) hybrid membranes were prepared. To obtain hybrid membranes, we used acetone/NMP/DMF wt% = 15:0.5:0.5 as mix solvents and make them on glass plate by 220μm scraper. Different weight ratio of TiO2 to CA were investigated and the relative membrane properties were measured and compared. The shear stress and shear strain of hybrid membranes were increased with increasing TiO2/CA ratio. Because of the increasing membrane thickness, water transportation resistance was increasing, too. The TiO2 : CA=1:10 membrane had the highest water flux.
其他識別: U0005-1908200916202800
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.