Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3762
標題: 氣管及兩相軟硬骨組織工程之開發與應用研究
Development of trachea and biphasic cartilage-bone tissue engineering
作者: 林振寰
Lin, Chen-Huan
關鍵字: 組織工程氣管;Tissue engineering trachea;聚己內酯;第二型膠原蛋白;旋轉式生物反應器;幾丁聚醣;低溫層積成形法;大氣電漿;明膠;聚麩胺酸鈉;透明質酸;poly(ε-caprolactone) (PCL);type II collagen (CII);rotational bioreactor;chitosan;Liquid-frozen deposition manufacturing (LFDM);air plasma (AP);gelatin;sodium poly (;hyaluronic acid (HA)
出版社: 化學工程學系所
引用: Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J. Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 2002;123:1177. [2] Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Int J Pediatr Otorhinolaryngol 2005;69:1489. [3] Wu W, Feng X, Mao T, Feng X, Ouyang HW, Zhao G., Chen F. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: A preliminary study in nude mice. Br J Oral Maxillofacial Surg 2007;45:272. [4] Moroni L, Curti M, Welti M, Korom S, Weder W, de Wijn JR, van Blitterswijk CA. Anatomical 3D fiber-deposited scaffolds for tissue engineering: designing a neotrachea. Tissue Eng. 2007;13:2483. [5] Komura M, Komura H, Kanamori Y, Tanaka Y, Suzuki K, Sugiyama M, Nakahara S, Kawashima H, Hatanaka A, Hoshi K, Ikada Y, Tabata Y, Iwanaka T. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. J Pediatr Surg 2008;43:2141. [6] Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA , et al. Clinical transplantation of a tissue-engineered airway. The lancet 2008;372: 2023. [7] O''Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev. 2008;14:447. [8] Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, Mainil-Varlet P. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 2004;25:3681. [9] Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE. Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 2002;46:2524. [10] Ghosh S, Viana JC, Reis RL, Mano JF. Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Mater Sci Eng C 2008;28:80. [1] Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg 2002;73:1995. [2] Belsey R. Resection and reconstruction of the intrathoracic trachea. Br J Surg 1950;38:200. [3] Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Int J Pediatr Otorhinolaryngol 2005;69:1489. [4] Wu W, Feng X, Mao T, Feng X, Ouyang HW, Zhao G., Chen F. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: A preliminary study in nude mice. Br J Oral Maxillofacial Surg 2007;45: 272. [5] Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J. Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 2002;123:1177. [6] Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 2003;76:1884. [7] Fujisawa T, Kimura Y, Hiura M, Kurozumi A, Fukushima K. Use of a processed endotracheal tube in general anesthesia for palatoplasty in a patient with subglottic stenosis. J Anesth 2001;15:100. [8] Grellmann W, Berghaus A, Haberland EJ, Jamali Y, Holweg K, Reincke K, Bierögel C. Determination of strength and deformation behavior of human cartilage for the definition of significant parameters. J Biomed Mater Res A 2006;78:168. [9] Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 2004;25:4263. [10] Causa F, Netti PA, Ambrosio L, Ciapetti G, Baldini N, Pagani S, Martini D, Giunti A. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J Biomed Mater Res A 2006;76:151. [11] Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67:1105,. [12] Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterials use. Clin Mater 1992;9:139. [13] Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas IV, Spector M. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997;38:95. [14] Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 1997;18:769. [15] Daniel H, Josette B, Jean-Claude B. Biochemical and physicochemical characterization of pepsin-solubilized type II collagen from bovin articular cartilage. Biochem J 1977;161:303. [16] Freshney RI. Culture of animal cells: a manual of basic technique, 3rd ed. New York: Wiley-Liss., 1994, pp.331-332. [17] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174:168. [18] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243:189. [19] Bergman M, Loxley R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Biochem 1963;35:1961. [20] Yang L, Korom S, Welti M, Hoerstrup SP, Zünd G, Jung FJ. Neuenschwander P, Weder W. Tissue engineered cartilage generated from human trachea using DegraPol scaffold. Eur J Cardiothorac Surg 2003;24:201. [21] Lin CH, Su JM, Chang H, Chen JW, Lin BN, Cheng WM, Hsu S.h. Evaluate poly(ε-caprolactone) materials as tracheal replacement-A preliminary study in rabbit. Symposium of Annual Conference of the Biomedical Engineering Society, Tainan, Taiwan, 2004. [1] Kojima K, Vacanti CA. Generation of a tissue-engineered tracheal equivalent. Biotechnol Appl Biochem 2004;39:257. Review. [2] Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 2003;76(6):1884. [3] Kim J, Suh SW, Shin JY, Kim JH, Choi YS, Kim H. Replacement of a tracheal defect with a tissue-engineered prosthesis: early results from animal experiments. J Thorac Cardiovasc Surg 2004;128(1):124. [4] Yamashita M, Kanemaru S, Hirano S, Magrufov A, Tamaki H, Tamura Y, et al. Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope 2007;117(3):497. [5] Kojima K, Bonassar LJ, Roy AK, Mizuno H, Cortiella J, Vacanti CA. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J 2003;17(8):823. [6] Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J. Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 2002;123(6):1177. [7] Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA , et al. Clinical transplantation of a tissue-engineered airway. The lancet 2008;372(9655):2023. [8] Lin CH, Su JM, Hsu Sh. Evaluation of type II collagen scaffolds reinforced by poly(epsilon-caprolactone) as tissue-engineered trachea. Tissue Eng Part C: Methods 2008;14(1):69. [9] Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 2001;19(6):1113. [10] Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthritis Cartilage 2006;14(4):323. [11] Lee CR, Grodzinsky AJ, Spector M. Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res A 2003;64(3):560. [12] Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 2002;20(4):842. [13] Sucosky P, Osorio DF, Brown JB, Neitzel GP. Fluid mechanics of a spinner-flask bioreactor. Biotechnol Bioeng 2004;85(1):34. [14] Ohyabu Y, Kida N, Kojima H, Taguchi T, Tanaka J, Uemura T. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnol Bioeng 2006;95(5):1003. [15] Williams KA, Saini S, Wick TM. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 2002;18(5):951. [16] Saini S, Wick TM. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 2003;19(2):510. [17] Saini S, Wick TM. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng 2004;10(5-6):825. [18] Dunkelman NS, Zimber MP, Lebaron RG, Pavelec R, Kwan M, Purchio AF. Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol Bioeng 1995;46(4):299. [19] Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999;17(1):130. [20] Daniel H, Josette B, Jean CB. Biochemical and physicochemical characterization of pepsin-solubilized type II collagen from bovin articular cartilage. Biochem J 1997; 161:303. [21] Freshney RI. Culture of animal cells: a manual of basic technique, 3rd ed. New York:Wiley-Liss 1994;331. [22] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174(1):168-176. [23] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243(1):189. [24] Bergman M, Loxley R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Biochem 1961;25(12): 1961. [25] Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM. Bioreactor design for tissue engineering. J Biosci Bioeng 2005;100(3):235. [26] Bilgen B, Sucosky P, Neitzel GP, Barabino GA. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Biotechnol Bioeng 2006;95(6):1009. [27] Hwang YS, Cho J, Tay F, Heng JY, Ho R, Kazarian SG et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials 2009;30(4):499. [28] Janssen FW, Oostra J, Oorschot A, van Blitterswijk CA. A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept. Biomaterials 2006;27(3):315. [29] Sun T, Norton D, Haycock JW, Ryan AJ, MacNeil S. Development of a closed bioreactor system for culture of tissue-engineered skin at an air-liquid interface. Tissue Eng 2005;11(11-12):1824. [30] Nieponice A, Soletti L, Guan J, Deasy BM, Huard J, Wagner WR, et al. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 2008;29(7):825. [31] Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, et al. Fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 1995;13(6):824. [32] Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, et al. Effects of shear stress on articular chondrocyte metabolism. Biorheology 2000;37(1-2):95. [33] Chen HC, Lee HP, Sung ML, Liao CJ, Hu YC. A Novel Rotating-Shaft Bioreactor for Two-Phase Cultivation of Tissue-Engineered Cartilage. Biotechnol Prog 2004;20:1802. [34] Gemmiti CV, Guldberg RE. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng 2006;12(3):469. [35] Sondrup C, Liu Y, Shu XZ, Prestwich GD, Smith ME. Cross-linked hyaluronan-coated stents in the prevention of airway stenosis. Otolaryngol Head Neck Surg 2006;135(1):28. [36] Teramachi M, Nakamura T, Yamamoto Y, Kiyotani T, Takimoto Y, Shimizu Y. Porous-type tracheal prosthesis sealed with collagen sponge. Ann Thorac Surg 1997;64(4):965. [37] Risbud M, Endres M, Ringe J, Bhonde R, Sittinger M. Biocompatible hydrogel supports the growth of respiratory epithelial cells: possibilities in tracheal tissue engineering. J Biomed Mater Res 2001;56(1):120. [38] Kobayashi K, Nomoto Y, Suzuki T, Tada Y, Miyake M, Hazama A, et al. Effect of fibroblasts on tracheal epithelial regeneration in vitro. Tissue Eng 2006;12(9):2619. [39] Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, et al. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007;28(34):5033. [1] Kawaguchi S, Nakamura T, Shimizu Y, et al. Mechanical properties of artificial tracheas composed of a mesh cylinder and a spiral stent. Biomaterials 2001;22(23):3085. [2] Cull DL, Lally KP, Mair EA, et al. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg 1990;50(6):899. [3] Yang L, Korom S, Welti M, Hoerstrup SP et al. Tissue engineered cartilage generated from human trachea using DegraPol scaffold. Eur J Cardiothorac Surg 2003;24(2):201. [4] Schultz P, Vautier D, Charpiot A, et al. Development of tracheal prostheses made of porous titanium: a study on sheep. Eur Arch Otorhinolaryngo 2007;264(4):433. [5] Teramachi M, Nakamura T, Yamamoto Y, et al. Porous-type tracheal prosthesis sealed with collagen sponge. Ann Thorac Surg 1997;64(4):965. [6] Kojima K, Bonassar LJ, Roy AK, et al. Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 2002;123(6):1177. [7] Wu W, Feng X, Mao T, et al. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Br J Oral Maxillofac Surg 2007;45(4):272. [8] Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg 2002;73:1995. [9] Belsey R. Resection and reconstruction of the intrathoracic trachea. Br J Surg 1950;38:200. [10] Kojima K, Vacanti CA. Generation of a tissue-engineered tracheal equivalent. Biotechnol Appl Bioche 2004;39:257. [11] Ng KW, Hutmacher DW, Schantz JT, et al. Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng 2001;7(4):441. [12] Porter JR, Henson A, Popat KC. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 2009;30(5):780. [13] Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67(4):1105. [14] Balguid A, Mol A, van Marion MH, et al. Tailoring Fiber Diameter in Electrospun Poly(epsilon-Caprolactone) Scaffolds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering. Tissue Eng Part A 2008;11. [15] Allen C, Han J, Yu Y, et al. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J Control Release. 2000;63(3):275. [16] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008;29(34):4532. [17] Ma Z, He W, Yong T, et al. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng 2005;11(7-8):1149. [18] Sung HW, Huang DM, Chang WH, et al. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res 1999;46(4):520. [19] Fujikawa S, Nakamura S, Koga K. Genipin, a new type of protein crosslinking reagent from gardenia fruits. Agric Biol Chem 1988;52:869. [20] Yao CH, Liu BS, Hsu SH, et al. Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res A 2004;69(4):709. [21] Yao CH, Liu BS, Hsu SH, et al. Calvarial bone response to a tricalcium phosphate-genipin crosslinked gelatin composite. Biomaterials 2005;26(16):3065. [22] Chang WH, Chang Y, Lai PH, et al. A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies. J Biomater Sci Polym Ed 2003;14(5):481. [23] Chen YS, Chang JY, Cheng CY, et al. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 2005;26(18):3911. [24] Touyama R, Takeda Y, Inoue K, et al. Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem Pharm Bull (Tokyo) 1994;42:668. [25] Zeeman R, Dijkstra PJ, van Wachem PB, et al. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials 1999;20(10):921. [26] Sung HW, Chang WH, Ma CY, et al. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 2003;64(3):427. [27] Huang LL, Sung HW, Tsai CC, et al. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 1998;42(4):568. [28] Koo HJ, Song YS, Kim HJ, Lee YH et al. Antiinflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol 2004;14:201. [29] Koo HJ, Lim KH, Jung HJ, et al. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J Ethnopharmaco 2006;103(3):496. [1] Veilleux NH, Yannas IV, Spector M. Effect of passage number and collagen type on the proliferative, biosynthetic, and contractile activity of adult canine articular chondrocytes in type I and II collagen-glycosaminoglycan matrices in vitro. Tissue Eng. 2004;10(1-2):119. [2] Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas IV, Spector M. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997;38(4):288. [3] Evanko SP, Tammi MI, Tammi RH, Wight TN. Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev. 2007;59(13):1351. [4] Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12(2):79-87 [5] Allison DD, Grande-Allen KJ. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 2006;12(8):2131. [6] Taguchi T, Ikoma T, Tanaka J. An improved method to prepare hyaluronic acid and type II collagen composite matrices. J Biomed Mater Res. 2002;61(2):330. [7] Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering. Tissue Eng. 2001;7(2):203. [8] Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24(26):4833. [9] Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials. 2000;21(6):581. [10] Tang S, Vickers SM, Hsu HP, Spector M Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds. J Biomed Mater Res A. 2007;82(2):323. [11] Park SN, Kim JK, Suh H. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials. 2004;25(17):3689. [12] Park SN, Lee HJ, Lee KH, Suh H. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials. 2003;24(9):1631. [13] Liu LS, Thompson AY, Heidaran MA, Poser JW, Spiro RC. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials. 1999;20(12):1097. [14] Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005;26(14):1925. [15] Daniel, H., Josette, B., Jean-Claude, B. Biochemical and physicochemical characterization of pepsin-solubilized type II collagen from bovin articular cartilage. Biochem J 1977;161, 303. [16] Kim YJ, Sah RY, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988;174(1):168. [17] Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture, by use of 1,9-dimethylmethylene blue. Anal Biochem 1996;243(1):189. [18] Bergman M, Loxley R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal Biochem 1961;25(12):1961. [19] Maroudas A. Physiochemical properties of articular cartilage in adult articular cartilage, 2nd ed. Kent, UK: Pitman Medical Publishing Co.; 1979:215. [20] Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397. [21] Allemann F, Mizuno S, Eid K, Yates KE, Zaleske D, Glowacki J. Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J Biomed Mater Res. 2001;55(1):13. [22] Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002;23(4):1205. [23] Cao H, Xu SY. EDC/NHS-crosslinked type II collagen-chondroitin sulfate s caffold: characterization and in vitro evaluation. J Mater Sci Mater Med. 2008;19(2):567. [24] Pietrucha K. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol. 2005;36(5):299. [25] Tang S, Spector M. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis. Biomed Mater. 2007;2(3):S135. [26] Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26(6):611. [27] Goodstone, N; Gargiulo B; Cartwright, A; Ashton, B Effects of high molecular weight hyaluronan on chondrocytes cultured within spongostan, a resorbable gelatin sponge. European Cells and Materials. 2002;Suppl. 2:9. [28] Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials. 2009;30(28):5068. [29] Yang YL, Kaufman LJ. Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly. Biophys J. 2009;96(4):1566. [1] Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 2005;11(1-2):1. [2] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21(7):667. [3] Safinia L, Datan N, Höhse M, Mantalaris A, Bismarck A. Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 2005;26(36):7537. [4] Wagner M, Kiapur N, Wiedmann-Al-Ahmad M, Hübner U, Al-Ahmad A, Schön R, et al. Comparative in vitro study of the cell proliferation of ovine and human osteoblast-like cells on conventionally and rapid prototyping produced scaffolds tailored for application as potential bone replacement material. J Biomed Mater Res A 2007;83(4):1154. [5] Barry JJA, Silva MMCG, Shakesheff KM, Howdle SM, Alexander MR. Using plasma deposits to promote cell population of the porous interior of three-dimensional poly(D,L-lactic acid) tissue-engineering scaffolds. Adv Funct Mater 2005;15(7):1134. [6] Chim H, Ong JL, Schantz JT, Hutmacher DW, Agrawal CM. Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly (D,L-lactide) scaffolds. J Biomed Mater Res A 2003;65(3):327. [7] Safinia L, Wilson K, Mantalaris A, Bismarck A. Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications. Macromol Biosci 2007;7(3):315. [8] Wan Y, Tu C, Yang J, Bei J, Wang S. Influences of ammonia plasma treatment on modifying depth and degradation of poly(L-lactide) scaffolds. Biomaterials 2006;27(13):2699. [9] Paolicelli P, de la Fuente M, Sánchez A, Seijo B, Alonso MJ. Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv 2009;6(3):239. [10]Prabaharan M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl 2008;23(1):5. [11]Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv 2005;12(1):41. [12]Liu BS, Yao CH, Fang SS. Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing. Macromol Biosci 2008;8(5):432. [13]Wittaya-areekul S, Prahsarn C. Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int J Pharm 2006;313(1-2):123. [14]Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater 2004;69(2):216. [15]Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20(12):1133. [16]Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, et al. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering: C 2002;20(1):35. [17]Geng L, Feng W, Hutmacher DW, Wong YS, Loh, HT, Fuh JYH. Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J 2005;11(2):90. [18]Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 2004;22(12):643. Review. [19]Peltola SM, Melchels FP, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008;40(4):268. Review. [20]Yen HJ, Hsu SH, Tseng CS, Huang JP, Tsai CL. Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng Part A 2009;15(5):965. [21]Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, et al. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 2008;8(6):568. [22]Zhu X, Chian KS, Chan-Park MB, Lee ST. Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res A 2005;73(3):264. [23]López-Pérez PM, Marques AP, da Silva RMP, Pashkuleva I and Reis RL. Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J Mater Chem 2007;17:4064. [24]Ogino A, Kral M, Yamashita M, Nagatsu M. Effects of Low-temperature surface-wave plasma treatment with various gases on surface modification of chitosan. Appl Surf Sci 2008;255:2347. [25]Wanichapichart P, Sungkum R, Taweepreda W, Nisoa M. Characteristics of chitosan membranes modified by argon plasmas. Surface and Coatings Technology 2009;203:2531. [26]Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 2002;143. [27]Khorasani MT, Mirzadeh H. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag-In vitro assay. Radiation Physics and Chemistry 2007;76(6):1011. [28]Amaral IF, Cordeiro AL, Sampaio P, Barbosa MA. Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. J Biomater Sci Polym Ed 2007;18(4):469. [29]Amaral IF, Sampaio P, Barbosa MA. Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation. J Biomed Mater Res A 2006;76(2):335. [30]Suphasiriroj W, Yotnuengnit P, Surarit R, Pichyangkura R. The fundamental parameters of chitosan in polymer scaffolds affecting osteoblasts (MC3T3-E1). J Mater Sci Mater Med 2009;20(1):309. [31]Nebe B, Finke B, Lüthen F, Bergemann C, Schröder K, Rychly J, et al. Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol Eng 2007;24(5):447. [32]Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. The effect of hydrogel charge density on cell attachment. Biomaterials 2004;25(15):3023. [33]Nakagawa M, Teraoka F, Fujimoto S, Hamada Y, Kibayashi H, Takahashi J. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res A 2006;77(1):112. [34]Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008;29(12):1776. [35]Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001;7(6):679. [36]Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17(2):137. Review. [37]Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998 Jan-Feb;19(1-3):133. [38]Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005 Sep;26(27):5474. [39]Matienzo LJ, Winnacker SK. Dry processes for surface modification of a biopolymer: Chitosan. Macromolecular Materials and Engineering 2003;287(12): 871. [1] Aoki H, Taguchi T, Saito H, Kobayashi H, Kataoka K, Tanaka J. Rheological evaluation of gelatin gels prepared with a citric acid derivative as a novel cross-linker, Mater. Sci. Eng. 2004;24:787. [2] Bellotto F, Johnson RG, Weintraub RM, Foley J, Thurer RL. Pneumostasis of injured lung in rabbits with gelatin-resorcinol formaldehyde-glutaraldehyde tissue adhesive, Surgery 1992;174:221. [3] Duchene D, Touchard F, Peppas NA. Pharmaceutical and medical aspects of bioadhesive systems for drug administration, Drug Dev. Ind. Pharm. 1988;14:283. [4] Hassan EE, Gallo JM. Simple rheological method for the in vitro assessment of mucin polymer bioadhesive bond strength, Pharm. Res. 1990;7:491. [5] Jin WL, Jae HP, Joseph RR. Bioadhesive-based dosage forms: the next generation, J. Pharm. Sci. 2000;89:850. [6] Mo X, Iwata H, Matsuda S. Soft tissue adhesive composed of modified gelatin and polysaccharides, J. Biomater. Sci. Polym. Ed. 2000;11:341. [7] Otani Y, Tabata Y, Ikada Y. A new biological glue from gelatin and poly (L-glutamic acid), J. Biomed. Mater. Res. 1996;31:158. [8] Otani Y, Tabata Y, Ikada Y. Rapidly curable biological glue composed of gelatin and poly (L-glutamic acid), Biomaterials 1996;17:1387. [9] Otani Y, Tabata Y, Ikada Y. Effect of additives on gelation and tissue adhesion of gelatin-poly (L-glutamic acid) mixture, Biomaterials 1998;19:2167. [10] Otani Y, Tabata Y, Ikada Y. Hemostatic capability of rapidly curable glues from gelatin poly (L-glutamic acid) and carbodiimide, Biomaterials 1998;19:2091. [11] Otani Y, Tabata Y, Ikada Y. Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak, Ann. Thorac. Surg. 1999;67:922. [12] Saito H, Taguchi T, Kobayashi H, Kataoka K, Tanaka J, Murabayashi S, Mitamura Y. Physicochemical properties of gelatin gels prepared using citric acid derivative, Mater. Sci. Eng. 2004;24:781. [13] H.W. Sung, D.M. Huang, W.H. Chang, R.N. Huang and J.C. Hsu, Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study, J. Biomed. Mater. Res. 1999;46:520. [14] Taguchi T, Saito H, Uchida Y, Sakane M, Kobayashi H, Kataoka K, Tanaka J. Bonding of soft tissues using a novel tissue adhesive consisting of a citric acid derivative and collagen, Mater. Sci. Eng. 2004;24:775. [15] Taguchi T, Saito H, Aoki H, Uchida Y, Sakane M, Kobayashi H, Tanaka J. Biocompatible high-strength glue consisting of citric acid derivative and collagen, Mater. Sci. Eng. 2006;26:9. [16] Tung CM, Dynes PJ. Relationship between viscoelastic properties and gelation in thermosetting systems, J. Appl. Polym. Sci. 2003;27:569. [17] Yao CH, Liu BS, Chang CJ, Hsu Sh, Chen YS. Preparation of networks of gelatin and genipin as degradable biomaterials, Mater. Chem. Ph
摘要: 
本論文之第一部份為探討聚幾內酯結合第二型膠原蛋白氣管支架於體內與體外之研究,第一階段以聚己內酯結合第二型膠原蛋白所開發之新穎氣管支架,接著將軟骨細胞種入氣管支架後於裸鼠皮下進行培養,結果顯示,經8週培養可看見類似軟骨組織形成,經由組織學分析顯示,軟骨陷窩(lacunae)均勻的分布於基質中與分泌大量的基質。第二階段探討生物反應器流場對組織工程氣管軟骨生長之影響,反應器內的流體在一個5到20 rpm轉速下運作,反應器流場經由模擬軟體分析剪應力最大值與最小值分別為0.189-0.752 dyne/cm2與30.3×10-5-104×10-5 dyne/cm2,實驗結果顯示在轉速15 rpm下培養8週,軟骨細胞數增加兩倍,GAG增加170%與膠原蛋白增加240%,接著將此轉數下所培養的軟骨組織移植到兔子氣管缺陷處,兔子平均存活達52天。第三階段為增加生物相容性,PCL的內腔以明膠經梔質素交聯的水膠來進行改質,結果顯示,以梔質素交聯的明膠能抑制肉芽組織的過度生長,進而延長動物的存活率。
第二部份設計一種兩相支架(軟骨與硬骨)作為全關節的支架。在軟骨部分,探討第二型膠原蛋白混摻不同濃度之透明質酸複合支架的生物相容性,結果顯示,透明質酸可以明顯增加膠原蛋白支架的壓縮強度,並促進軟骨細胞向支架內部生長。在硬骨部分探討幾丁聚醣的薄膜與支架以大氣電漿進行改質,結果顯示經電漿處理的薄膜接觸角明顯降低與zeta電位趨向於正電,整體而言,經大氣電漿處理過的幾丁聚醣支架促進MC3T3-E1細胞向內部生長與礦物的形成可能是經由ALP與OCN的基因向上調節。此外,在生物膠部份,探討不同分子量的poly (gamma-glutamic acid)與明膠類型(type A or B)的對生物膠特性的影響,結果顯示在10%明膠(type A, 300 Bloom)與 2%gamma-PGA (880 kDa)有最強的粘著強度與最短的凝膠時間。生物膠在含有不同濃度的交聯劑下對纖維母細胞沒有毒性反應產生,在老鼠皮下植入也沒有明顯的發炎反應。

The first part of study was to develop a tissue engineering-trachea scaffold for in vitro and in vivo studies. A novel composite scaffold comprising a poly(epsilon-caprolactone) (PCL) stent and a type II collagen sponge for tissue engineering trachea was first fabricated. The chondrocytes-scaffold constructs were implanted subcutaneously in the dorsum of nude mice. The results indicated that gross appearance of the constructs revealed cartilage-like tissue at 8 weeks. Histological and biochemical analyses of the tissue engineering tracheal cartilage revealed evenly spaced lacunae embedded in the matrix, with abundant proteoglycans and type II collagen. Then a scaffold-bioreactor system was further developed for growing tissue-engineered trachea, and the effect of fluid flow on producing trachea-like neotissue was investigated. The bioreactor operated under continuous flow at a rotational speed from 5 to 20 rpm. Flow analysis showed that the maximal and minimal shear stress in the bioreactor was 0.189-0.752 dyne/cm2 and 30.3×10-5-104×10-5 dyne/cm2, respectively. Especially at 15 rpm, a two-fold increase in cell number, 170% increase in GAG, and 240% increase in collagen were found compared to static culture at 8 weeks. The constructs grown under 15 rpm was selected for implantation into tracheal defects of rabbits. The mean survival of six animals was 52 days. As a separate endeavor, the lumen of the PCL stent was modified by gelatin hydrogel crosslinked with genipin. The results showed that PCL modified by genipin crosslinked gelatin suppressed granulation tissue growth and prolonged animal survival time in comparison with the original PCL tube.
The second part of study was to develop materials for a biphasic scaffold (cartilage and bone) for the use as a osteochondral graft. In the cartilage portion, hyaluronic acid (HA) was added into collagen type II (CII) to prepare the composite scaffolds. The effect of HA on the biocompatibility of CII-HA composite scaffolds was investinged. The incorporation of HA into a CII scaffold was found to increase the compression strength. In vitro culture suggested that CII-HA scaffolds may promote the ingrowth of chondrocytes into the scaffolds due to the presence of HA. In the bony portion, chitosan precision scaffolds were fabricated. To further improve the surface properties of chitosan, chitosan films and scaffolds were treated with air plasma (AP) in this study. The results showed that the water contact angle of AP-treated films was significantly reduced and the zeta potential tended toward a more positive charge after AP treatment. Overall, the results showed that changes in surface chemistry and surface charge may account for the better cell proliferation on the treated chitosan films. AP treatment enabled the penetration of MC3T3-E1 cells into scaffolds, facilitated their proliferation and promoted the mineral deposition probably through ALP and OCN gene upregulation. Finally, the bioadhesive to integrate cartilage and bone scaffolds was developed based on poly (gamma-glutamic acid) (gamma-PGA) and gelatin. The influences of the molecular weight and the type (A or B) of gelatin, as well as the molecular weight of gamma-PGA, on the properties of gelatin/gamma-PGA mixed bioadhesives were studied. The mixture of 10% type A gelatin 300 Bloom and 2% gamma-PGA of 880 kDa showed the shortest gelation time and the greatest bonding strength. The mixed glues crosslinked with various concentrations of EDC (1.7-2.5%) showed no cytotoxicity to fibroblasts. In addition, no significant inflammatory response was observed in the rat subcutaneous implantation.
URI: http://hdl.handle.net/11455/3762
其他識別: U0005-1910200901121700
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.