Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3775
標題: 次臨界水解與超臨界醇解反應製備生質柴油
Production of biodiesel from jatropha oil using subcritical hydrolysis and supercritical methylation
作者: 陳慶鴻
Chen, Ching-Hung
關鍵字: Jatropha seed;生質柴油;supercritical extraction;subcritical hydrolysis;supercritical methyltion;biodiesel;free fatty acid;methyl esters.;蔴瘋樹籽;次臨界水解;超臨界醇解;游離脂肪酸;脂肪酸甲酯
出版社: 化學工程學系所
引用: 1. 李宏台等,「替代車用燃料技術」,能源與資源專集,(2007)。 2. 赴晨、付玉杰、祖元剛、張乃靜、王黎麗。研究開發燃料油植物生產生物柴油的幾個策略。植物學通報,23(3),312-319(2006)。 3. 茍圓、準堅。麻瘋樹資源的開發利用現狀及前景。資源開發與市場,23(6),519-522(2007)。 4. 馬復京、游漢明。以林木種子油脂生產生質柴油。林業研究專訊,14(3),22-25(2007)。 5. 楊少強。毒樹煉油綠金趨勢。商業周刊,1041,166(2007)。 6. 潘標志,卓開發,洪志猛。木質能源麻瘋樹產業發展對策研究。泉州科技局,生物能源樹種麻瘋樹引種栽培技術研究項目(2005N-8),134-137(2005)。 7. 徐世鴻 ,” 利用薄膜分離技術精製植物原油”, 中原大學,碩士論文,(2007) 8. 洪長春,痲瘋樹(Jatropha curcas)專利分析,Thomson Delphion Patent Database. The Thomson Corporation (2008) 9. ENS紐西蘭,奧克蘭報導;丁秋仁編譯;蔡麗伶審校. “紐航選用生質燃油高標準 麻瘋樹籽受青睞” 永續公共工程,取自http://eem.pcc.gov.tw/eem/?q=node/30049 10. Achten, W.M.J., Verchot, L., Franken, Y.J., Mathijs, E., Singh,V.P., Aerts R., Muys, B., “Jatropha bio-diesel production and use,” Biomass Bioenergy 32 1063-1084 (2008) 11. Adolf, W., Opferkuch, H.J., Hecker, E., “Irritant phorbol derivatives from four Jatropha species,” Phytochemistry, 23(1), 129-132 (1988) 12. Akintayo, E.T., “Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes,” Bioresour. Technol., 92, 307-310 (2004) 13. Bala, B.K., “Studies on biodiesels from transformation of vegetable oils for Diesel engines,” Energy Edu Sci Technol, 15, 1-43 (2005) 14. Demirbas, A., “Biodiesel fuels from vegetable oils via catalytic and noncatalytic supercritical alcohol transesterifications and other methods,” Energy Convers. Manage., 44, 2093–2109 (2003). 15. Demirbas, A., “Biodiesel from sunflower oil in supercritical methanol with calcium oxide “Energy Convers. Manage., 48, 937–941 (2007) 16. Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M., Hackel, S., “Jatropha curcas L. as a source for the production of biofuel in Nicaragua,” Bioresour. Technol., 58, 77-82 (1996) 17. Freedman, B., Pryde, E.H., Mounts, T.L., “Variables affecting the yields of fatty esters from transesterified vegetable oils,” J. Am. Oil Chem. Soc., 61, 1638–1643 (1984) 18. Furuta, S., Matsuhashi, H., Arata, K., “Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmosphericpressure,” Catal. Commun., 5, 721–3 (2004). 19. Francis, G., Edinger, G., Becker, K., “A concept for simultaneous wasteland reclamation, fuel production, and socioeconomic development in degraded areas in India. need, potential and perspectives of Jatropha plantations.” Natural Resources Forum, 29,12-14 (2005) 20. Gandhi, V.M., Cherian, K.M., Mulky, M.J., “Toxicological studies on ratanjyot oil,” Food Chem. Toxicol., 33, 39-42 (1995) 21. Gryglewicz, S., “Rapeseed oil methyl esters preparation using heterogeneous Catalysts,” Biores. Technol., 70, 249–53 (1999)Kaushik, N., Kumar, K., Kumar, S., Kaushik, N., Roy, S., ”Genetic variability and divergence studies in seed traits andoil content of Jatropha (Jatropha curcas L.) accessions,” Biomass Bioenergy,31, 497-502 (2007) 22. Hama, S., Yamaji, H., Kaieda, M., Oda, M., Kondo, A., Fukuda, H., “Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production,” Biochem. Eng. J., 21, 155–60 (2004) 23. Haas, M.J., Michaiski, P.J., Runyon, S., Nunez, A., Scott, K. M., “Production of FAME from Acid Oil a By-product of Vegetable Oil Refining,” J.Am. Oil Chem. Soc., 80, 97-102(2003) 24. Han, H., “Preparation biodiesel from soybean oil using supercritical methanol CO2 as co-solvent” Process Biochem., 40, 3148-3151 (2005) 25. He, H., “Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process” Fuel, 86, 442–447 (2007) 26. Kaushik, N., Kumar, K., Kumar, S., Kaushik, N., Roy, S., ”Genetic variability and divergence studies in seed traits andoil content of Jatropha (Jatropha curcas L.) accessions,” Biomass Bioenergy,31, 497-502 (2007) 27. Knothe, G., Dunn, R.O., Bagby, M.O., “Biodiesel: the use of vegetable oils and their derivatives as alternative Diesel fuels,” Am. Chem. Soc Symp Series., 666, 172–208 (1997) 28. Kumar, M.S., Ramesh, A., Nagalingam B., “An experimental comparison of methods to use methanol and Jatropha oil in a compression ignition engine,” Biomass Bioenergy; 25, 309–18 (2003) 29. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., “Synthesis of biodiesel via acid catalysis,” Ind. Eng. Chem. Res., 44, 5353–63 (2005) 30. Makkar, H.P.S., Becker, K., Sporer, F., Wink, M., “Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas,” J. Agric. Food. Chem., 45, 3152-3157 (1997) 31. Martinez-Herrera, J., Siddhuraju, P., Francis, G., Da’vila-Ortiz, G., Becker, K., “Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico,” Food Chem., 96(1), 80-89 (2006) 32. Minami, E., Saka, S., “Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process,” Fuel., 85, 2479–2483 (2006) 33. Naengchomnong, W., Thebtaranonth, Y., Wiriyachitra, P., “Isolation and structure determination of four novel diterpenes,” Tetrahedron Lett., 27, 567-5678 (1986) 34. Oda, M., Kaieda, M., Hama, S., Yamaji, H., Kondo, A., Izumoto, E., “Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production,” Biochem. Eng. J., 23, 45–51 (2004) 35. Openshaw, K., “A review of Jatropha curcas: an oil plant ofunfulfilled promise,” Biomass Bioenergy, 19, 1-15 (2000) 36. Peterson, C. L., Feldman, M., Korus, R., and Auld, D. L., “Batch Type Transesterification Process for Winter Rape Oil,” Appl. Eng. Agric., 7, 711-716 (1991) 37. Pinto, A. C., Guarieiro, L. L. N., Rezende, M. J. C., Ribeiro, N. M., Torres, E. A., Lopes, W. A., “Biodiesel: an overview,” J. Braz. Chem. Soc., 16, 1313–30 (2005) 38. Saka, S., Kusdiana, D., “Biodiesel fuel from rapeseed oil as prepared in supercritical methanol” Fuel, 80, 225-231 (2001) 39. Saka, S., Minami, E., “Kinetics of hydrolysis and methyl esterification for biodieselproduction in two-step supercritical methanol process,” Fuel, 85, 2479–2483 (2006) 40. Shimada, Y., Watanabe, Y.T., Samujawa, A., Sugihara, H., Noda, H., Fukuda, and Tominaga, Y., “Conversion of Vegetable Oil to Biodoesel Using Immobilized Candida Antarctica Lipase,” J. Am. Oil Chem. Soc., 76, 789-793 (1999) 41. Solsoloy, A.D., Domingo, E.O., Bilgera, B.U., “Occurrence, mortality factors and within plant distribution of bollworm, Helicoverpa armigera (Hubn.) on cotton,” Philippine Journal of Science ., 123, 9220 (1995) 42. Stirpe, F., Pession-Brizzi, A., Lorenzoni, E., “Studies on the proteins from the seeds of Croton tiglium and Jatropha curcas,” BIOCHEM. J., 156, 1-6 (1976) 43. Venkataraman, N.S., “editor. Focus on bio-diesel,” Nandini Chem. J., 9(IX), 19–21 (2002) 44. Wang, L., “ Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol” Fuel, 86, 328-333 (2007) 45. Zhang, Y., Dub, M.A., McLean, D.D., Kates, M., “Biodiesel production from waste cooking oil: 2. economic assessment and sensitivity analysis,” Bioresour. Technol., 90, 229–40 (2003)
摘要: 
本研究探討以次臨界水解與超臨界醇解兩階段反應,將蔴瘋樹籽油轉換成為生質柴油的技術。首先以超臨界二氧化碳萃取程序,取得含殼蔴瘋種籽與脫殼蔴瘋種籽之粗油; 再進行次臨界水解反應與超臨界醇解反應,分別取得水解油與醇解油。研究以游離脂肪酸含量(CFFA)與脂肪酸甲酯的含量(CFAME)作為指標,由應答曲面設計法,探討反應時間、反應溫度與進料比例對轉化率的影響。以10:1水油比,在60分鐘反應時間與543K反應溫度,次臨界水解反應的轉化率值達94.5%(wt)。以3:1醇油比,在9分鐘時間與563K溫度,超臨界酯化反應的轉化率可達98.3%(wt),醇解油中脂肪酸甲酯濃度達752.4(mg/goil)。最後,以3:1醇及脫殼油比值,在15分鐘與563K反應,醇解的轉化率達99%,油中脂肪酸甲酯濃度達985.2 (mg/goil)。本研究亦獲得水解與醇解反應的活化能與常數值。本論文指出次臨界水解與超臨界醇解兩階段的反應,可轉化脫殼蔴瘋種籽油,得到高純度的生質柴油。

This study investigates supercritical carbon dioxide extraction of triglycerides from Jatropha seed, followed by subcritical hydrolysis and supercritical methylation to obtain biodiesel. Effects of reaction temperature, reaction time and solvent to feed ratio on contents of free fatty acids in hydrolyzed oil and fatty acid esters in methylated oil designed by a response surface methodology were also examined. Subcritical hydrolysis of SC-CO2 extracted Jatropha oil was carried out at 543K under 1 hour reaction and at the solvent to feed ratio of 10:1 for. Following methylation of the hydrolyzed oil at 563K under 9 minutes and at the solvent to feed ratio of 3:1 yields the content of methylesters of 752.4(mg/goil), reaction conversion of the methylation attained 98.3(%). The similar two-step reaction of the oil extracted from deshelled seed results in the 99% conversion of methylation. The concentration of methyl esters reaches 985.2(mg/goil). This study shows that subcritical hydrolysis and supercritical methylation of the supercritical extracted oil are feasible to produce Jatropha biodisel.
URI: http://hdl.handle.net/11455/3775
其他識別: U0005-2508200916115600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.