Please use this identifier to cite or link to this item:
標題: 人類口腔前驅細胞之分化特性
The differential characterization of human dental progenitor cells
作者: 林惠真
Lin, Hui-Jhen
關鍵字: Stem cells from human exfoliated deciduous teeth;人類乳牙牙髓幹細胞;neurogenesis;adipogenesis;osteogenesis;chondrogenesis;神經分化;脂肪分化;硬骨分化;軟骨分化
出版社: 化學工程學系所
引用: [1] Smith AG. Embryo-devrived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435-62. [2] Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005; 11: 1998-221. [3] Améen C, Strehl R, Björquist P, Lindahl A, Hyllner J, Sartipy P. Review: Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 2008; 65: 54-80. [4] National Institutes of Health. Department of Health and Human Services. Stem cells: scientific progress and future research directions. 2001. news/stemcell/scireport.htm [5] 馮清榮、蔡女滿、徐偉成、韓鴻志、林欣榮。淺談幹細胞研究之展望,慈濟醫學人文月刊,2003年第2卷第1期。 [6] 台灣牙醫界,2005年24卷3期14-18。 [7] Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003; 5: 32-45. [8] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267-74. [9] Cancedda R, Dozin B, Fiannoni P, Quarto R. Tissue engineeting and cell therapy of cartilage and bone. Matrix Biol 2003; 22: 81-91. [10] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Sci 1999; 284: 143-7. [11] Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci 1998; 95: 3908-13. [12] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 10711-6. [13] Bianco P, Costantini M, Dearden LC, Bonucci E. Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. Br J Haematol 1998; 68; 401-3. [14] Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987; 20: 263-72. [15] Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, selfrenewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278-94. [16] Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondro- genesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238: 265-72. [17] Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998; 4: 415-28. [18] Avital I, Inderbitzin D, Aoki T, Tyan DB, Cohen AH, Ferraresso C, et al. Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem Biophys Res Commun 2001; 288: 156-64. [19] Petersen BE, Bowen WC, Patrene KD, Mars WN, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Sci 1999; 284: 1168-70. [20] Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M, et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 2001; 12: 1401-9. [21] Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose- competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003; 111: 843-50. [22] Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res 2001; 282: 148-52. [23] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164: 247-56. [24] Tomita M, Adachi Y, Yamada H, Takahashik, Kiuchi K, Oyaizu H, et al. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem cells 2002; 20: 278-83. [25] Grove JE, Bruscia E, Kruse DS. Plasticity of bone marrow-derived stem cells. Stem cells 2004; 22: 487-500. [26] Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007; 327: 449-62. [27] Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, et al. Higher chondrogenic potential of fibrous synovium-and adipose synovium- derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 2006; 54: 843-53. [28] Gindraux F, Selmani Z, Obert L, Davani S, Tiberghien P, Herve P, Deschaseaux F. Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule. Cell Tissue Res 2007; 327: 471-83. [29] Fouillard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J. Homing of in vitro expanded Stro-1– or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 2004; 103: 3313-9. [30] Carter RA, Wicks IP. Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum 2001; 44: 985-94. [31] Katebi M, Soleimani M, Cronstein BN. Adenosine A2A receptors play an active role in mose bone marrow-derived mesenchymal stem cell development. J Lekoc Biol 2009; 85: 428-44. [32] Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow -derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69-80. [33] Koussoulakou DS, Margaritis LH, Koussoulakos SL. Review: A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 2009; 5: 226-43. [34] Urist MR. Bone: formation by autoinduction. Sci 1965; 150: 893-9. [35] Feng F, Hou LT. Treatment of osseous defects with fibroblast-coated hydroxyl- apatite particles. J Formos Med Assoc 1992; 91: 1068-74. [36] Hou LT, Tsai AY, Liu CM, Feng F. Autologous transplantation of gingival fibroblast-like cells and a hydroxylapatite complex graft in the treatment of periodontal osseous defects: cell cultivation and long-term report of cases. Cell transplantation 2003; 12: 787-91. [37] Melcher AH. Repair of wounds in the periodontium of the rat. Influence of periodontal ligament on osteogenesis. Arch Oral Biol 1970; 12: 1183-204. [38] Melcher AH. Postgraduate training and graduate education in dentistry. J Can Dent Assoc 1976; 42: 591-8. [39] Nojima N, Kobayashi M, Shionome M, TakaHashi N, Suda T, Hasegawa K. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. J Periodontal Res 1990; 3: 179-85. [40] Sawa Y, Phillips A, Hollard J, Holard J, Yoshida S, Braithwaite MW. The in vitro life-span of human periodontal ligament fibroblasts. Tissue Cell 2000; 32: 163- 70. [41] Seo B, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-55. [42] Gronthos S, Manlani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and vivo. PNAS 2000; 97: 13625-30. [43] Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81: 531-5. [44] Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: Stem cells from human exfoliated deciduous teeth. PNAS 2003; 100: 5807-12. [45] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003; 18: 696-704. [46] Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 2006; 10: 2813-23. [47] Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, et al. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006; 11: 3079-105. [48] Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Missironi SM, Pereira LV, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissue Organs 2006; 184: 105-16. [49] Carnes DL, Maeder CL, Geaves DT. Cells with osteoblastic phenotypes can be explanted from human gingival and periodontal ligament. J Periodontol 1997; 68: 701-7. [50] Dunn CA, Jin Q, Taba MJ, Franceschi RT, Bruce Rutherford R, Giannobile WV. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther 2005; 11: 294-9. [51] Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7: 335-43. [52] Kishimoto S, Hattori H, Nakamura S, Amano Y, Kanatani Y, Tanaka Y, et al. Expansion and characterization of human bone marrow-derived mesenchymal stem cells cultured on fragmin/protamine microparticle-coated matrix with FGF-2 in low serum medium. Tissue Eng Part C Methods 2009 Feb 1 (Epub ahead of print). [53] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181: 67-73. [54] Tavassoli M, Minguell JJ. Homing of hemopoietic progenitor cells to the marrow. Proc Soc Exp Biol Med 1991; 196: 367-73. [55] Kolf CM, Cho E, Tuan RS. Review: Biology of adult mesenchymal stem cells regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9: 204. [56] Gage FH. Mammalian Neural Stem Cells. Sci 2000; 287: 1433-8. [57] Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 1994; 372: 263-6. [58] Li XJ, Zhang SC. In vitro differentiation of neural precursors from human embryonic stem cells. Methods Mol Biol 2006; 331:169-77. [59] Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001 ; 19: 1134-40. [60] Hockfield S, Mckay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci 1985; 5: 3310-28. [61] Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, et al. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 1996; 17: 607-15. [62] Hoffman PN, Cleveland DW. Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc Natl Acad Sci USA 1988; 85: 4530-3. [63] Rodan GA, Noda M. Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr 1991; 1: 85-98. [64] Okumura M, Ohqushi H, Dohi Y, Katuda T, Tamai S, Koerten HK, et al. Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics. J Biomed Mater Res 1997; 37: 122-9. [65] Oqiso M. Bone formation on HA implants: a commentary. J Long Term Eff Med Implants 1998; 8: 193-200. [66] Salinelli S, Lo JY, Mims NP, Zsigmond E, Smith LC, Chan L. Structure- function relationship of lipoprotein lipase-mediated. J Biol Chem 1996; 271: 21906-13. [67] Stephens JM, Morrison RF, Wu Z, Farmer SR. PPAR gamma ligand-dependent induction of STAT1, STAT5A, and STAT5B during adipogenesis. Biochem Biophys Res Commun 1999; 262: 216-22. [68] Wu Z, Xie Y, Bucher NL, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev 1995 ; 9: 2350-63. [69] Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224-34. [70] Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr 2000; 20: 535-59. [71] Gregoire FM, Samas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78: 783-809. [72] Christian Hendrich, Ulrich Nöth, Jochen Eulert. Cartilage surgery and future perspectives. Springer. 2003; p 3-15 [73] Kuriwaka M, Ochi M, Uchio Y, Maniwa S, Adachi N, Mori R, et al. Optimum combination of monolayer and three-dimensional cultures for cartilage-like tissue engineering. Tissue Eng 2003; 9: 41-9. [74] Haart M, Marijnissen WJ, van Osch GJ, Verhaar JA. Optimization of chondrocyte expansion in culture. Effect of TGF beta-2, bFGF and L-ascorbic acid on bovine articular chondrocytes. Acta Orthop Scand 1999; 70: 55-61. [75] Mwale F, Stachura D, Roughley P, Antoniou J. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res 2006; 24: 1791-8. [76] Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002; 99: 4397-402. [77] Lefebvre V, Behringer RR, Crombrugghe B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage 2001; 9 Suppl A: S69-75. [78] Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000; 19: 389-94. [79] Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, et al. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng 2002; 8: 739-51. [80] Kopen GC, Prockop DJ, Phinney DC. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999 ; 96: 10711-6. [81] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164: 247-56. [82] Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH, et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005; 330: 1153-61.
本研究比較乳牙幹細胞(stem cells from human exfoliated deciduous teeth, SHED)與其他口腔細胞(HGF)的分化特性。細胞經初代培養之後,進行細胞生長速率分析與細胞表面抗原分析;另外,在體外誘導神經、硬骨、脂肪和軟骨發生並以人類皮膚纖維母細胞(human skin fibroblasts, HSF)作為負控制組,人類骨髓間質幹細胞(human bone marrow-derived mesenchymal stem cells, HBMSC)作為正控制組。由細胞生長速率分析的結果發現,HGF和SHED兩種細胞的倍增時間分別為65.2±3.1小時和51.2±4.4小時,HGF和SHED在CD29、CD44、CD73、CD90和CD105表面抗原呈陽性,與人類骨髓間質幹細胞具有相同的表面抗原表現。HGF和SHED經體外誘導神經分化4.5天後形態明顯改變;21天後神經特異性的基因和蛋白質都明顯增加。經低細胞密度誘導硬骨分化21天後,RUNX-2和鹼性磷酸酶的表現量增加,而在硬骨分化晚期所表現的成熟基因osteocalcin,亦表現出成熟硬骨細胞的礦化現象。以高細胞密度誘導脂肪分化21天後,脂肪特異性基因PPARg2和LPL的表現量增加,同時有成熟脂肪細胞油滴的累積。以三度空間細胞微珠誘導軟骨發生21天後,能使軟骨分化基因的表現量增加且有大量的軟骨基質分泌。以上實驗證實HGF和SHED具有多向分化的能力,其分化特性不輸於HBMSC,而HGF的分化能力也與SHED相似,甚至在軟骨分化上,HGF更有潛力。本研究中,發現口腔前驅細胞能分化成中胚層的硬骨細胞、脂肪細胞和軟骨細胞,亦具有跨胚層分化成外胚層的神經細胞的能力,表現與骨髓間質幹細胞相似,相信在未來將可做為另一個成體幹細胞的來源。

This study investigates whether human dental tissue contains a certain population of cells that have intrinsic differentiation potential. Cells derived from dental tissue were characterized by FACS-analysis and cultured for 21 days separately in the osteogenic, adipogenic, chondrogenic and neurogenic media. Phenotypical evaluation was carried out by immunohistochemical analysis and RT-PCR analysis. The results were compared with those from adult bone marrow-derived stromal cells. Dental tissue-derived cells were negative for CD34, CD31, CD45, and were positive for CD29, CD44, CD73, CD90, and CD105. In the adipogenic medium, the intracellular lipid vacuoles were visible and dental tissue-derived cells showed upregulation of adipogenic marker genes LPL and PPARg2. In the chondrogenic medium, gingiva-derived cells were positively stained for collagen type II and showed upregulation of both collagen type II and sox9 genes. In the osteogenic medium, von Kossa staining showed calcium deposition and cells showed upregulation of OCN and RUNX2 genes. In the neurogenic medium, cells showed upregulation of GFAP and beta-III tubulin both at mRNA and protein levels. This study suggests that gingiva-derived cells may have an intrinsic differentiation potential. Gingiva-derived cells generated both neural and mesodermal progeny. From this research we propose that gingiva-derived cells represent a population of novel multipotent adult stem cells and may provide an accessible and autologous source of stem cells for transplantation.
其他識別: U0005-2907200916220900
Appears in Collections:化學工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.