Please use this identifier to cite or link to this item:
標題: 光合微生物燃料電池產電機制之研究及新式微生物燃料電池之開發
Mechanism study on photosynthetic microbial fuel cells and development of a novel microbial fuel cell
作者: 王志峯
Wang, Chih-Feng
關鍵字: Nernst equation;能士特方程式;Photosynthetic microbial fuel cells;Spirulina platensis;光合微生物燃料電池;螺旋藻
出版社: 化學工程學系所
引用: 1. 操璟璟, 王.徐., 微生物燃料電池(MFC)技術及其發展前景的研究. ENERGY CONSERVATION TECHNOLOGY, 2008. 26(6). 2. Potter, M.C., Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lodin Ser. B, 1911. 84: p. 260-276. 3. Shukla, A.K., Suresh, P., Berchmans, S. and Rajendran, A., Biological fuel cells and their applications. Curr. Sci., 2004. 87(4): p. 455-468. 4. DelDuca, M.G.F., J. M.; Zurilla, R. W., Developments in industrial microbiology. American Institute of Biological Sciences., 1963. 4: p. 81-84. 5. 吳霞琴, 寶., 生物燃料电池的研究进展. 电化学, 2004. 10(1). 6. Lovley, D.R., Stolzt, J. F., and Nord, G. L., Anaerobic production of magnetite by a dissimilatory iron - reducing microorganism. Nature, 1987. 330: p. 252-254. 7. Park, H.S., Kim, B. H., and Kim, H. S., A novel electro-chemically active and Fe (III) - reducing bacterium phylogenetically related to clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001. 7: p. 297-306. 8. Logan, B.E., Simutaneous wastewater treatment and biological electricity generation. Water Science, 2005. 52: p. 331- 371. 9. Tanaka K, T.R., Ogawa T. , Bioelectrochemical fuel-cell operated by the cyanobacterium, Anabaena variabilis. J Chem Technol Biotechnol 1985. 35(B): p. 191-197. 10. Yagishita, T., T. Horigome, and K. Tanaka, Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. Journal of Chemical Technology & Biotechnology, 1993. 56(4): p. 393-399. 11. Yagishita, T., et al., Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp. PCC6714. Journal of Bioscience and Bioengineering, 1999. 88(2): p. 210-214. 12. Lam, K.B., C. Mu, and L. Liwei. A micro photosynthetic electrochemical cell. in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on. 2003. 13. Allen, R.M.B., H. P., Microbiol fuel-cells-electricity production from carbonhydrates. Appl Biochem Biotech., 1993. 39/40: p. 27-40. 14. Rajagopal, S., S.D. Murthy, and P. Mohanty, Effect of ultraviolet-B radiation on intact cells of the cyanobacterium Spirulina platensis: characterization of the alterations in the thylakoid membranes. J Photochem Photobiol B, 2000. 54(1): p. 61-6. 15. Ciferri, O., Spirulina: the edible microorganism. Microbiological Reviews, 1983. 47(44): p. 551-578. 16. Peng, T.C., The effects of light intensity, temperatureand salinity on polysaccharide of Spirulina platensis. Department of Aquaculture, National Taiwan Ocean University. Master Thesis, 2005. 17. Hu, Q., Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Industrial production of microalgal cell-mass and secondary products-major industrial species. Arthrospira (Spirulina) platensis., ed. A. Richmond. 2003, USA: Blackwell Science. 264-272. 18. Wikdors, G.H. and M. Ohno, Impact of algal research in aquaculture. Journal of phycology, 2001. 37: p. 968-974. 19. Deshnium, P., et al., Temperature independent and-dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1(Arthrospira sp. PCC 9438). Microbiology Letters, 2000. 184: p. 207-213. 20. Gregersen, L. and S. Jorgensen, Supervision of fed-batch Fermentations Chemical Engineering Journal, 1999. 75: p. 69-76. 21. Kim, N., et al., Effect of initial carbon sources on the performance of microbial fuel cells containing <I>Proteus vulgaris</I>. Biotechnology and Bioengineering, 2000. 70(1): p. 109-114. 22. Liu, H., S. Cheng, and B.E. Logan, Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environmental Science & Technology, 2004. 39(2): p. 658-662. 23. 王思凱, 燃料型態與有機負荷對微生物燃料電池績效之影響. 2008, 國立臺灣海洋大學 河海工程研究所. 24. Tender, L.M., et al., Harnessing microbially generated power on the seafloor. Nat Biotech, 2002. 20(8): p. 821-825. 25. Park, et al., Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied Microbiology and Biotechnology, 2002. 59(1): p. 58-61. 26. Moon, H., I.S. Chang, and B.H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 2006. 97(4): p. 621-627. 27. Liu, H., Cheng, S., and Logan, B. E., Power generation in fed-batch microbial fuel cells as functions of Ionic strength, temperature and reactor configuration. Environmental science and technology., 2005. 39: p. 5488-5493. 28. Raghavulu, S.V., et al., Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochemistry Communications, 2009. 11(2): p. 371-375. 29. Schr&ouml;der, U., J. Nie&szlig;en, and F. Scholz, A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude13. Angewandte Chemie International Edition, 2003. 42(25): p. 2880-2883. 30. Oh, S., B. Min, and B.E. Logan, Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol, 2004. 38(18): p. 4900-4. 31. Du, Z., H. Li, and T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances. 25(5): p. 464-482. 32. Niessen, J., U. Schr&ouml;der, and F. Scholz, Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch. Electrochemistry Communications, 2004. 6(9): p. 955-958. 33. Cheng, S.L., and Logan, B. E., Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental science and technology, 2006. 40: p. 2426-2432. 34. Jang, J.K., Pham, T. H., Chang, I. S., Kim, B. H., Kang, K. H.,Moon, H. S., and Cho, K. S., Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 2007. 39: p. 1007-1012. 35. Marty, J.L., D. Olive, and Y. Asano, Measurement of BOD: Correlation Between 5-Day BOD and Commercial BOD Biosensor Values. Environmental Technology, 1997. 18(3): p. 333 - 337. 36. Riedel, K., et al., A fast estimation of biochemical oxygen demand using microbial sensors. Applied Microbiology and Biotechnology, 1988. 28(3): p. 316-318. 37. KARUBE, I., et al., Large-Scale Bacterial Fuel Cell Using Immobilized Photosynthetic Bacteria. Annals of the New York Academy of Sciences, 1984. 434(1): p. 427-436. 38. Kim, B.H., et al., Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 2003. 25(7): p. 541-545. 39. Logan, B.E., Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol, 2005. 52(1-2): p. 31-7. 40. Angenent, L.T., et al., Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 2004. 22(9): p. 477-485. 41. Min, B., et al., Electricity generation from swine wastewater using microbial fuel cells. Water Research, 2005. 39(20): p. 4961-4968. 42. Gregory, K.B., D.R. Bond, and D.R. Lovley, Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 2004. 6(6): p. 596-604. 43. Gregory, K.B. and D.R. Lovley, Remediation and Recovery of Uranium from Contaminated Subsurface Environments with Electrodes. Environmental Science & Technology, 2005. 39(22): p. 8943-8947. 44. Gil, G.C., et al., Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron, 2003. 18(4): p. 327-34. 45. Park, D.H. and J.G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering, 2002. 81(3): p. 348-355. 46. Liu, H. and B.E. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Technology, 2004. 38(14): p. 4040-4046. 47. Liu, H., R. Ramnarayanan, and B.E. Logan, Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science & Technology, 2004. 38(7): p. 2281-2285. 48. Zarrouk, C., Contribution a letude d''une cyanophycee. Influence de divers facteurs physiques. et chimiques sur la croissance et la photosynthese do Spirulina maxima. 1966, University of Paris, France. Ph.D Thesis. 49. Costa, J.A., L.M. Colla, and P.F. Duarte Filho, Improving Spirulina platensis biomass yield using a fed-batch process. Bioresour Technol, 2004. 92(3): p. 237-41. 50. Chojnacka, K., A. Chojnacki, and H. G&oacute;recka, Treace element removal by Spirulina sp. from copper smelter and refinery effuents. Hydrometallurgy, 2004. 73: p. 147-153. 51. Chojnacka, K. and A. Noworyta, Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 2004. 34: p. 461-465. 52. Tanaka, K., N. Kashiwagi, and T. Ogawa, Effects of light on the electrical output of bioelectrochemical fuel-cells containing <I>Anabaena variabilis</I> M-2: Mechanism of the post-illumination burst. Journal of Chemical Technology & Biotechnology, 1988. 42(3): p. 235-240. 53. He, Z., et al., Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol, 2009. 43(5): p. 1648-54.
本研究利用能士特方程式(Nernst equation)做為理論基礎,探討此方程式與光合微生物燃料電池(Photosynthetic microbial fuel cells)產電之關係,期望替電池尋找一條模型(Model),使其能完整描述電壓變化的過程。實驗結果顯示不管是在陽極或是陰極通入氧氣,還是藉由通入二氧化碳改變槽內之氫離子濃度,其所造成電壓之變化都與吾人利用能士特方程式所推測之情況相符合。並且由於能士特方程式中,並無微生物本體對光合微生物燃料電池之電壓的影響,因此根據實驗結果,提出修正型的能士特方程式(Modified Nernst equation),使其更能完整的描述電壓之變化。而吾人在研究中發現藉由對陽極或是陰極交替式地曝氣,會使得電壓呈現振盪之現象,根據實驗結果推測其原因為質傳所造成的,並推測可藉由能士特方程式,使光合微生物燃料電池產生如同交流電之狀況。

Based on the Nernst equation, the mechanism of the electric response on photosynthetic microbial fuel cells (PMFC) was investigated in this study. From the experimental results, the variation of voltage can be predicted by Nernst equation under the condition of sparging with N2 or CO2. According to Nernst equation, the microbial cell growth shows little effects on the voltage of PMFC. A modified Nernst equation was proposed to describe the varieties of voltage properly. Additionally, the phenomenon of oscillation on voltage was caused by aerating gas in anode or cathode by turns. The different way on stirring was examined, and it shows the reason of oscillation was mass transfer, and there is a chance to make alternating current by Nernst equation.
It is observed that the suspended algae cell will grow with little voltage change in the light condition. However when operating in the dark condition with the cell attached in the electrode, the algae cell will decline along with a large voltage response. According to these phenomena, a novel PMFC device was built. The expected change response was observed on the experimental results.
其他識別: U0005-0408201021412500
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.