Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChang, Chen-Weien_US
dc.identifier.citation1. Yalow, R.S. and S.A. Berson, Immunoassay of endogenous plasma insulin in man. The Journal of Clinical Investigation, 1960. 39 1157-1175. 2. Porstmann, T. and S.T. Kiessig, Enzyme immunoassay techniques an overview. Journal of Immunological Methods, 1992. 150 5-21. 3. Morgan, C., D. Newman, and C. Price, Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 1996. 42 193-209. 4. Chaubey, A. and B.D. Malhotra, Mediated biosensors. Biosensors and Bioelectronics, 2002. 17 441-456. 5. Thévenot, D.R., K. Toth, R.A. Durst, et al., Electrochemical biosensors: recommended definitions and classification. Analytical Letters, 2001. 34 635 - 659. 6. F. Scheller, F.S., D. Pfeifer, R. Hintsche, I. Dransfeld, R. Renneberg, U. Wollenberger, K. Riedei, M. Paviova, M. Kuhn, H. G.Muller, Research and development of biosensors: a review. Analyst, 1989. 114 653. 7. 陳燕惠, 奈米碳管與膠體金於電化學生物感測器上之應用. 2006: 國立中興大學化學工程學系碩士論文. 8. Clark, L.C. and C. Lyons, Electrode system for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962. 102 29-45. 9. Komaba, S., M. Seyama, T. Momma, et al., Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochimica Acta, 1997. 42 383-388. 10. Manowitz, P., P.W. Stoecker, and A.M. Yacynych, Galactose biosensors using composite polymers to prevent interferences. Biosensors and Bioelectronics, 1995. 10 359-370. 11. Kumar, A., R. Malhotra, B.D. Malhotra, et al., Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol-gel film. Analytica Chimica Acta, 2000. 414 43-50. 12. Xue, H., Z. Shen, and Y. Li, Polyaniline-polyisoprene composite film based glucose biosensor with high permselectivity. Synthetic Metals, 2001. 124 345-349. 13. Hoshi, T., H. Saiki, and J.-i. Anzai, Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta, 2003. 61 363-368. 14. Jdanova, A.S., S. Poyard, A.P. Soldatkin, et al., Conductometric urea sensor. Use of additional membranes for the improvement of its analytical characteristics. Analytica Chimica Acta, 1996. 321 35-40. 15. A. J. Brad and I.R. Faulkner, Electrochemichal method: fundaments and applications. 2000: Wily. 16. Wang, J., Analytical electrochemistry-second edition. 2000: Wiley-VCH. 17. 胡啟章, 電化學原理與方法. 2002: 五南圖書出版股份有限公司. 18. Finklea, H.O., S. Avery, and M. Lynch, Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir, 1987. 3 409-413. 19. Nuzzo, R.G., F.A. Fusco, and D.L. Allara, Spontaneously organized molecular assemblies. 3. preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society, 1987. 109. 20. Sellers, H., A. Ulman, Y. Shnidman, et al., Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society, 1993. 115 9389-9401. 21. Love, J.C., L.A. Estroff, J.K. Kriebel, et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105 1103-1170. 22. Wink, T., S.J.v. Zuilen, A. Bult, et al., Self-assembled monolayers for biosensors. Analyst, 1997. 122 43R-50R. 23. Pei, R., Z. Cheng, E. Wang, et al., Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosensors and Bioelectronics, 2001. 16 355-361. 24. Jiang, D., J. Tang, B. Liu, et al., Covalently coupling the antibody on an amine-self-assembled gold surface to probe hyaluronan-binding protein with capacitance measurement. Biosensors and Bioelectronics, 2003. 18 1183-1191. 25. 黃建豪, 結合奈米金-免疫抗體作用於SAM 修飾電極上之電化學阻抗特性變化進行微量 Protein A 的檢測. 2007: 國立成功大學醫學工程研究所碩士論文. 26. Chlandler J. , Gurmin T. , and R. N., The place of gold in rapid test. IVD Technology, 2000. 6 37-49. 27. Chandler J. , Robinson N. , and W. K., Handling false signals in gold-based rapid tests. IVD technology, 2001. 7 34-45. 28. Chen, H., J.-H. Jiang, Y. Huang, et al., An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex. Sensors and Actuators B: Chemical, 2006. 117 211-218. 29. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci., 1973. 241 20-22. 30. Link, S., Z.L. Wang, and M.A. El-Sayed, Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. The Journal of Physical Chemistry B, 1999. 103 3529-3533. 31. Toshima, N., M. Harada, Y. Yamazaki, et al., Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. The Journal of Physical Chemistry, 1992. 96 9927-9933. 32. Mayer, A.B.R. and J.E. Mark, Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles. Polymer, 2000. 41 1627-1631. 33. Kim, S.Y. and M.J. Choi, Preparation and characterization of digoxin antibody and its application to immunoassays: comparison of performance characteristics between enzyme immunoassay and immunostrip test. Microchemical Journal, 2000. 65 209-219. 34. 何敏夫, 臨床化學. 1998: 合計圖書出版社. 35. 杜艷櫻, 以雞蛋黃免疫球蛋白-免疫親和式層析法對牛乳乳鐵蛋白及豬血丙型球蛋白之純化. 2000: 國立台灣大學食品科技研究所博士論文. 36. 林明泉, 臨床血清免疫學. 2000: 藝軒圖書出版社. 37. Fan, A., C. Lau, and J. Lu, Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label. Analytical Chemistry, 2005. 77 3238-3242. 38. Berggren, C. and G. Johansson, Capacitance Measurements of Antibody−Antigen Interactions in a Flow System. Analytical Chemistry, 1997. 69 3651-3657. 39. Wu, Z.-S., J.-S. Li, T. Deng, et al., A sensitive immunoassay based on electropolymerized films by capacitance measurements for direct detection of immunospecies. Analytical Biochemistry, 2005. 337 308-315. 40. Hu, S.-Q., Z.-M. Xie, C.-X. Lei, et al., The integration of gold nanoparticles with semi-conductive oligomer layer for development of capacitive immunosensor. Sensors and Actuators B: Chemical, 2005. 106 641-647. 41. Teeparuksapun, K., P. Kanatharana, W. Limbut, et al., Disposable Electrodes for Capacitive Immunosensor. Electroanalysis, 2009. 21 1066-1074. 42. Limbut, W., P. Thavarungkul, P. Kanatharana, et al., Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor. Electrochimica Acta, 2010. 55 3268-3274. 43. Loyprasert, S., M. Hedström, P. Thavarungkul, et al., Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor. Biosensors and Bioelectronics, 2010. 25 1977-1983. 44. Berggren, C., B. Bjarnason, and G. Johansson, Capacitive Biosensors. Electroanalysis, 2001. 13 173-180. 45. Wu, Z.-S., J.-S. Li, M.-H. Luo, et al., A novel capacitive immunosensor based on gold colloid monolayers associated with a sol-gel matrix. Analytica Chimica Acta, 2005. 528 235-242. 46. Li, J., Z. Wu, H. Wang, et al., A reusable capacitive immunosensor with a novel immobilization procedure based on 1,6-hexanedithiol and nano-Au self-assembled layers. Sensors and Actuators B: Chemical, 2005. 110 327-334. 47. Limbut, W., P. Kanatharana, B. Mattiasson, et al., A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Analytica Chimica Acta, 2006. 561 55-61. 48. Song Zhang, Jingjing Ding, Ying Liu, et al., Development of a Highly Enantioselective Capacitive Immunosensor for the Detection of α-Amino Acids. Analytical Chemistry, 2006. 78 7592-7596. 49. Loyprasert, S., P. Thavarungkul, P. Asawatreratanakul, et al., Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosensors and Bioelectronics, 2008. 24 78-86. 50. Labib, M., M. Hedström, M. Amin, et al., A capacitive immunosensor for detection of cholera toxin. Analytica Chimica Acta, 2009. 634 255-261. 51. Labib, M., M. Hedström, M. Amin, et al., A multipurpose capacitive biosensor for assay and quality control of human immunoglobulin G. Biotechnology and Bioengineering, 2009. 104 312-320. 52. Yang, G.-J., J.-L. Huang, W.-J. Meng, et al., A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Analytica Chimica Acta, 2009. 647 159-166. 53. Wang, J., B. Tian, and K.R. Rogers, Thick-Film Electrochemical Immunosensor Based on Stripping Potentiometric Detection of a Metal Ion Label. Analytical Chemistry, 1998. 70 1682-1685. 54. Lu, B., E.I. Iwuoha, M.R. Smyth, et al., Development of an "electrically wired" amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase. Analytica Chimica Acta, 1997. 345 59-66. 55. Scheller, F. and F. Schubert, Techniques and Instrumentation in Analytical Chemistry: Biosensers. Elserver, 1992. 11. 56. Valat, C., B. Limoges, D. Huet, et al., A disposable Protein A-based immunosensor for flow-injection assay with electrochemical detection. Analytica Chimica Acta, 2000. 404 187-194. 57. Santandreu, M., F. Céspedes, S. Alegret, et al., Amperometric Immunosensors Based on Rigid Conducting Immunocomposites. Analytical Chemistry, 1997. 69 2080-2085. 58. Crumbliss, A.L., S.C. Perine, J. Stonehuerner, et al., Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnology and Bioengineering, 1992. 40 483-490. 59. Wang, M., L. Wang, G. Wang, et al., Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions. Biosensors and Bioelectronics, 2004. 19 575-582. 60. Zhao, J., C.R. Bradbury, S. Huclova, et al., Nanoparticle-Mediated Electron Transfer Across Ultrathin Self-Assembled Films. The Journal of Physical Chemistry B, 2005. 109 22985-22994. 61. Panasyuk, T.L., V.M. Mirsky, S.A. Piletsky, et al., Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors. Analytical Chemistry, 1999. 71 4609-4613. 62. A. J. Bard and L.R. Faulkner, Electrochemical Principles, Methods, and Applications. 1996, Britain: Oxford University. 63. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry. 1998, New York: Wiley-Vch. 64. J. S. Mattson and J.H.B. Mark, Activated carbon: surface chemistry and adsorption from solution. 1998, New York: Wiley-Vch. 65. Bohren C.F. and H.D. R., Absorption and Scattering of Light by Small Particles. 1983, New York: Wiley. 66. He, Y.Q., S.P. Liu, L. Kong, et al., A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005. 61 2861-2866. 67. Xiao, Y., H.-X. Ju, and H.-Y. Chen, Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Analytica Chimica Acta, 1999. 391 73-82. 68. Katherine C. Grabar, R. Griffith Freeman, Michael B. Hommer, et al., Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 1995. 67 735-743. 69. Mahmoud Labib, M.H., Magdy Amin, Bo Mattiasson, A capacitive immunosensor for detection of cholera toxin. Analytica Chimica Acta, 2009. 634 255-261. 70. Mirsky, V.M., M. Riepl, and O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997. 12 977-989.zh_TW
dc.description.abstract本研究利用自組裝單層薄膜吸附上奈米金粒子於網版印刷電極(screen-printed electrode)上,製備一新型電容免疫感測器;當形成抗體抗原複合物時會造成電容值的改變,因此透過量測電容值的改變即可檢測樣品的濃度,將之應用於檢測人血清白蛋白(Human serum albumin,HSA)上。實驗中探討最適化製備電容型免疫感測器的條件:抗體固定濃度為0.5 mg/ml;抗原結合pH值為pH 7.4;抗體抗原結合時間為50分鐘;量測電容時電解質濃度為10 mM。 研究中首先比較thiourea和cysteamin兩者於電容型免疫感測器上之效益,由結果可得知cysteamine其效果較佳。另外開發一個新的策略,將cysteamine SAM上的胺基和cysteamine所具之硫醇基透過glutaraldehyde形成雙硫醇分子膜,然後比較單硫醇分子膜和雙硫醇分子膜對奈米金粒子的吸附效果在免疫感測器的檢測上。透過最適化條件,其cysteamine所製備之單硫醇分子膜感測器檢測HSA線性範圍在0.78~800 ng/ml,而cysteamine所製備之雙硫醇分子膜感測器檢測HSA線性範圍在0.39~1000 ng/ml。因此開發一個新的雙硫醇分子膜應用於免疫感測器上,能有效提升奈米金粒子吸附抗體的量,增大其檢測範圍與極限。 此電容型免疫感測器在檢測過程中不須加入標記(label-free),檢測快速(real-time),並可應用於單次使用、拋棄式的感測器上,並於臨床檢驗分析上檢測HSA。zh_TW
dc.description.abstractFabrication of a novel capacitive immunosensor based on self-assembled monolayer (SAM) incorporated with gold nanoparticles on a screen-printed thick-film electrode was the first time built for the detection of human serum albumin (HSA). Anti-HSA was immobilized on gold nanoparticles incorporated to a self-assembled monolayer onto the gold working electrode. Interaction of anti-HSA and HSA was directly detected by the capacitance measurement. The optimal preparation condition for fabricating this HSA immunosensor was studied. The optimized manufacturing reaction conditions were as follows: anti-HSA concentration of 0.5 mg/ml, pH 7.4 immuno binding time of 50 minutes, and the electrolyte concentration of 10 mM. Both thiourea and cysteamine were used to build the capacitive immunosensor. Cysteamine has a better detection range and detection limit. Second. The dithiol monolayer was compared with the thiol monolayer in the immunosensor detection. Experimental results showed that the immunosensor made by cysteamine responded linearly to HSA concentration. The linear detection range for thiol monolayer was in the range of 0.78-800 ng/ml (R=0.994) and dithiol monolayer was in the range of 0.39-1000 ng/ml (R=0.9974). The dithiol monolayer in immunosensor with gold nanoparticles to absorb more antibody displayed an increase in the detection range and detection limit. The capacitive immunosensor is a label-free and real time detection. In the assessment of the potential applications, the developed sensor can be employed for the single use, disposable biosensor in the clinical analysis of HSA.en_US
dc.description.tableofcontents中文摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 第一章、緒論 1 第二章、文獻回顧 2 2.1、生物感測器 2 2.1.1、生物感測器之原理 2 2.1.2、生物感測器之組成 3、生物感測元件 3、信號換能器 4、訊號處理器 4 2.1.3、電化學式生物感測器 7、電位式生物感測器 7、電流式生物感測器 8、阻抗式生物感測器 9 2.2、電化學分析 9 2.2.1、循環伏安法 9 2.2.2、計時安培法 10 2.3、自組裝單層薄膜 12 2.4、奈米金粒子 14 2.4.1、奈米金簡介 14 2.4.2、奈米金製備 15 2.5、免疫分析原理及應用 17 2.5.1、抗原 17 2.5.2、抗體 18 2.5.3、抗原-抗體之反應作用 20 2.5.4、免疫分析法 22 2.5.5、電容型免疫感測器 23 2.5.6、抗原抗體固定化的方法 29 2.5.7、人血清白蛋白 31 2.6、電容器 33 2.6.1 電容原理 33 2.6.2 電容測定方法 33 2.7、電雙層理論及結構 36 2.7.1、Helmholtz 電雙層理論 36 2.7.2、Gouy-Chapman 電雙層理論 36 2.7.3、Stern 電雙層理論 37 第三章、實驗 41 3.1、實驗設備 41 3.1.1、電化學系統之設備 41 3.1.2、其他設備 42 3.2、實驗藥品 43 3.3、實驗步驟 44 3.3.1、化學還原奈米金溶液之製備 44 3.3.2、奈米金粒子之粒徑量測 44 3.3.3、清洗電極 46 3.3.4、實驗流程 48、使用thiourea進行電極表面修飾 48、使用cysteamine進行電極表面修飾 49 3-3-5、測量電容 51 第四章、結果與討論 53 4.1、循環伏安法分析電極表面修飾之情形 54 4.1.1、thiourea修飾之thiol monolayer電極 54 4.1.2、thiourea修飾之dithiol monolayer電極 55 4.1.3、cysteamine修飾之thiol monolyer電極 56 4.1.4、cysteamine修飾之dithiol monolayer電極 57 4.2、電極表面修飾情形 58 4.2.1、掃描式電子顯微鏡 58 4.2.2、原子力顯微鏡 61 4.3、修飾電容型免疫感測器最適化條件之探討 64 4.3.1、thiourea修飾電極最適化情形之探討 65、最適抗體結合濃度 65、最適抗體抗原結合pH值 66、最適抗體抗原反應時間 67 4.3.2、cysteamine修飾電極最適化情形之探討 68、最適抗體結合濃度 68、最適抗體抗原結合pH值 69、最適抗體抗原反應時間 70 4.3.3、電解質離子強度對免疫感測器電容之影響 71 4.4、檢測HSA 72 4.4.1、比較thiourea和cysteamine修飾電極檢測HSA之範圍 73 4.4.2、比較thiol monolayer和dithiol monolayer電極檢測HSA之範圍 75 第五章、結論與未來展望 78 參考文獻 80zh_TW
dc.subjectCapacitive immunosensoren_US
dc.subjectHuman serum albuminen_US
dc.subjectSelf-assembled monolayeren_US
dc.subjectGold nanoparticlesen_US
dc.title比較thiol及dithiol monolayer修飾網版印刷電極於電容型免疫感測器上檢測人血清白蛋白zh_TW
dc.titleComparison of thiol and dithiol monolayer modification on screen-printed electrode in capacitive immunosensor for detection of human serum albuminen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.