Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYu, Kun-Cianen_US
dc.identifier.citation1. Lister, P.D., Beta-lactamase inhibitor combinations with extended-spectrum penicillins: factors influencing antibacterial activity against enterobacteriaceae and Pseudomonas aeruginosa. Pharmacotherapy, 2000. 20(9 Pt 2): p. 213S-218S; discussion 224S-228S. 2. Olivieri, R., et al., Microbial transformation of racemic hydantoins to D-amino acids. Biotechnol. Bioeng., 1981. 23: p. 2173-83. 3. Takahashi, S., et al., Microbial transformation of hydantoins to N-carbamyl-D-amino acids. Ferment. Technol. J., 1979. 57: p. 328-332. 4. Ager, D.J., et al., The large scale synthesis of "unnatural" amino acids. Enantiomer, 2000. 5(3-4): p. 235-43. 5. Friedman, M., Chemistry, nutrition, and microbiology of D-amino acids. J Agric Food Chem, 1999. 47(9): p. 3457-79. 6. Snyder, S.H. and P.M. Kim, D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem Res, 2000. 25(5): p. 553-60. 7. Kim, D.M. and H.S. Kim, Enzymatic synthesis of D-p-hydroxyphenylglycine from DL-p-hydroxyphenylhydantoin in the presence of organic cosolvent. Enzyme Microb. Technol., 1993. 15: p. 530-34. 8. Polastro, E.T., A. Waslker, and W. A. Harald., Enzymes in the fine chemicals industry: dreams and realities. Biotechnol. Bioeng., 1989. 7: p. 1238-1241. 9. Lapointe, G., S. Viau, D. Leblance, N. Robert, and A. Morin., Cloning, sequencing, and expression in Escherichia coli. . J. Ferment. Bioeng, 1994. 80: p. 622-624. 10. Yamada, H., S. Takahashi, and Y. K, Process for preparing D-N-carbamoyl-2-(phenyl or substituted phenyl)glycines. US patent 4094741,Kanegafuchi., 1978. 11. Lee, D.C., G. J. Kim, Y. K. Cha, and C. Y. Lee., Mass production of thermostable D-hydantoinase by batch culture of recombinant Escherichia coli with a constitutive expression system. Biotechnol. Bioeng., 1997. 54(449-455). 12. Grifantini, R., G. Galli, G. Carpani, C. Pratesi, G. Frascotti, and G. Grandi., Efficient conversion of 5-substituted hydantoins to D-α- amino acids using recombinant Escherichia coli strains. Microbiol., 1998. 144(947-954). 13. Chao, Y.P., C. J. Chiang, T. E. Lo, and H. Fu., Overproduction of D-hydantoinase and carbamoylase in a soluble form in Escherichia coli. Appl. Microbiol. Biotechnol., 2000. 54(348-353). 14. Kim G. J., D.E.L., and H. S. Kim., Functional expression and characterization of the two cyclic amidohydrolase enzymes, allantoinase and a novel phenylhydantoinase, from Escherichia coli. J. Bacteriol., 2000. 187(7021-7028). 15. Kim, G.J., D. E. Chen, and H. S. Kim., Directed evolution of a novel N-carbamylase/D hydantoinase fusion enzyme for functional expression with enhanced stability. Biotechnol. Bioeng., 2000. 68(211-217). 16. Ikenaka, Y., H. Nanba, K. Yajima, Y. Yamada, M. Takano, and S. Takahashi., Increase in thermostability of N-carbamyl-D-amino acid amidohydrolase on amino acid substitutions. Biosci. Biotechnol. Biochem., 1998a. 62(1668-1671). 17. Ikenaka, Y., H. Nanba, K. Yajima, Y. Yamada, M. Takano, and S. Takahashi., Relation between an increase in thermostability and amino acid substitution in N-carbamyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem., 1998b. 62: p. 1672-1675. 18. Ikenaka, Y., H. Nanba, K. Yajima, Y. Yamada, M. Takano, and S. Takahashi., Thermostability reinforcement through a combination of thermostability related mutations of N-carbamyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem., 1999. 63: p. 91-95. 19. Luksa, J., et al., Purification of human tumour necrosis factor by membrane chromatography. Journal of Chromatography A, 1994. 661(1-2): p. 161-168. 20. Ghosh, R., Protein separation using membrane chromatography: opportunities and challenges. Journal of Chromatography A, 2002. 952(1-2): p. 13-27. 21. 陳東煌, 離子交換膜的應用. 化工, 1999. 46(4): p. 14-23 22. Freitag, R., H. Splitt, and O.-W. Reif, Controlled mixed-mode interaction chromatography on membrane adsorbers. Journal of Chromatography A, 1996. 728(1-2): p. 129-137. 23. Langlotz, P. and K.H. Kroner, Surface-modified membranes as a matrix for protein purification. Journal of Chromatography A, 1992. 591(1-2): p. 107-113. 24. 蘇惠玲, Agrobacterium radiobacter發酵生產N-氨甲醯D-氨基酸水解酵素及其特性研究. 台灣科技大學化學工程技術研究所碩士論文, 1996. 25. Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M., Ohkubo, K., Hirashi, Y., Yamada, K., and Takahashi, S.,Immobilization of N-carbamoyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem., 1998b. 62: p. 1839-1844. 26. Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M., Ohkubo, K., Hirashi, Y., Yamada, K., and Takahashi, S., Immobilization of thermotolerant N-carbamoyl-D-amino acid amidohydrolase. J. Mol.Catal. B: Enzym.,, 1999. 6: p. 257-263. 27. Foster, I.M., Dorrington, R. D., and Burton, S. G., Enhanced hydantoinase and N-carbamoylase activity on immobilization of Agrobacterium tumefaciens. Biotechnol. Lett., 2003. 25: p. 67-72. 28. A. Kotha, et al., Adsorption and expression of penicillin G acylase immobilized onto methacrylate polymers generated with varying pore generating solvent volume. Applied Biochemistry and Biotechnology, 1991. 30: p. 297-302. 29. A. Naidja, P.M. Huang, and J.-M. Bollag, Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. Journal of Molecular Catalysis A:Chemical 1997. 115: p. 305-316. 30. J. He, et al., A new support for the immobilization of penicillin acylase. Journal of Molecular Catalysis B: Enzymatic, 2000. 11: p. 45-53. 31. 田蔚城, 生物技術的發展與應用. 九州圖書文物有限公司, 1998. 32. 陳國誠, 生物固定化技術與產業應用. 茂昌圖書有限公司, 2000. 33. 潘建亮, 固定化盤尼西林去醯基酵素反應動力學建模及其兩水相系統分離反應之探討. 國立成功大學化學工程研究所博士論文, 2005. 34. 陳國誠, 生物固定化技術與產業應用. 茂昌圖書有限公司, 2000: p. 33-35. 35. 蘇大榮, 不同組成之熱敏感乳液粒子於酵素固定上之研究. 長庚大學碩士論文, 1999. 36. 陳國誠, 微生物酵素工程學. 藝軒圖書出版社, 1992: p. 263-315. 37. Sitton, O.C.a.G., J. I., Ethanol production in an immobilized cell reactor. Biotechnol. Bioeng., 1980. 22: p. 1735-1748. 38. Okita, W.B., Bonham, D. B., and Gainer, J. L., Covalent coupling of microorganisms to a cellulosic support. Biotechnol. Bileng., 1985. 27: p. 632-637. 39. S. Hjerten, et al., Gradient and isocratic high-perforemance hydrophobic interaction chromatography of proteins on agarose columns. Journal of Chromatography, 1986. 359: p. 99-109. 40. Gibert, S., N. Bakalara, and X. Santarelli, Three-step chromatographic purification procedure for the production of a His-tag recombinant kinesin overexpressed in E . coli. J. Chromatogr. B, 2000. 737: p. 143-150. 41. Krishnan, S. and M.A. Vijayalakshmi, Purification of an acid protease and a serine carboxypeptidase from Aspergillus niger using metal-chelate affinity chromatography. J. Chromatogr., 1985. 329: p. 165-170. 42. Chaga, G.S., et al., Isolation and characterization of catalase from Penicillium chrysogenum. J. Chromatogr., 1992. 604: p. 177-183. 43. Krishnan, S. and M.A. Vijayalakshmi, Semi-preparative-scale isolation of carboxypeptidase isoenzymes from ASPERGILLUS NIGER by a single metal chelate affinity chromatographic step I. Preliminary analysis of quantitative aspects. J. Chromatogr., 1987. 397: p. 339-346. 44. Lubinska, V.K. and G. Muszynska, Use of metal chelate affinity chromatography for removal of zinc ions from alkaline phosphatase from Escherichia coli. J. Chromatogr., 1990. 522: p. 171-177. 45. Zhang, C.-M., S.A. Reslewic, and C.E. Glatz, Suitability of immobilized metal affinity chromatography for protein purification from canola. Biotechnol. Bioeng., 1999. 68: p. 52-58. 46. Genaro, A.C.B.d., et al., Recovery and purification of aprotinin from industrial insulin processing effluent by immobilized chymotrypsin and negative IMAC chromatographies. Process Biochemistry, 2002. 37: p. 1413-1420. 47. Vancan, S., E.A. Miranda, and S.M.A. Bueno, IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Proc Biochem., 2002. 37: p. 573-579. 48. Fitton, V. and X. Santarelli, Evaluation of immobilized metal affinity chromatography for purification of penicillin acylase. J. Chromatogr. B, 2001. 754: p. 135-140. 49. Sanchez, J., et al., Efficient two-step chromatographic purification of penicillin acylase from clarified Escherichia coli ultrasonic homogenate. J. Chromatogr. B, 2001. 753: p. 45-50. 50. Porath, J., B. Olin, and B. Granstrand, Immobilized-metal affinity chromatography of serum proteins on gel-immobilized group III A metal ions. Arch. Biochem. Biophys., 1983. 225: p. 543-547. 51. Armisen, P., et al., Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. J. Chromatogr. A, 1999. 848: p. 61-70. 52. Liesiene, J., et al., Immobilized metal affinity chromatography of human growth hormone Effect of ligand density1. J. Chromatogr. A, 1997. 764: p. 27-33. 53. Price, A.E., et al., Studies on the microheterogeneity and in vitro activity of glycosylated and nonglycosylated recombinant human prolactin separated using a novel purification process. Endocrinology, 1995. 136: p. 4827-4833. 54. Jiang, W. and M.T.W. Hearn, Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions. Anal. Biochem., 1996. 242: p. 45-54. 55. Hemdan, E.S. and J. Porath, Development of immobilized metal affinity chromatography I. Comparision of two iminodiacetate gels. J. Chromatogr., 1985. 323: p. 247-254. 56. Porath, J. and B. Olin, Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry, 1983. 22: p. 1621-1630. 57. Hemdan, E.S. and J. Porath, Development of immobilized metal affinity chromatography II. Interaction of amino acids with immobilized nickel iminodiacetate. J. Chromatogr., 1985. 323: p. 255-264. 58. Rassi, Z.E. and C. Horvath, Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support. J. Chromatogr., 1986. 359: p. 241-253. 59. Anspach, F.B., Silia-based metal chelate affinity sorbents I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques. J. Chromatogr. A, 1994. 672: p. 35-49. 60. Finette, G.M.S., Q.-M. Mao, and M.T.W. Hearn, Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. J. chromatogr. A, 1997. 763: p. 71-90. 61. Grasselli, M., et al., Immobilized metal ion affinity hollow-fiber membranes obtained by the direct grafting technique. Radiat. Phys. Chem., 1999. 55: p. 203-208. 62. Senel, S., et al., Zinc ion-promoted adsorption of lysozyme to Cibacron Blue F3GA-attached microporous polyamide hollow-fiber membranes. Colloids surface A, 2001. 182: p. 161-173. 63. Crawford, J., et al., Immobilized metal affinity membrane separation: characteristics of two materials of differing preparation chemistries. Separation Sci. Technol., 1999. 34: p. 2793-2802. 64. Beeskow, T.C., et al., Surface Modification of Microporous Polyamide Membranes With Hydroxyethyl Cellulose and Their Application as Affinity Membranes. J. Chromatogr. A, 1995. 715: p. 49-65. 65. Reif, O.-W., et al., Immobilized metal affinity membrane adsorbers as stationary phases for metal interaction protein separation. J. Chromatogr. A, 1994. 664: p. 13-25. 66. Rodemann, K. and E. Staude, Polysulfone affinity membranes for the treatment of amino acids mixtures. Biotechnol. Bioeng., 1995. 46: p. 503-509. 67. Luo, Q., et al., Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly(glycidyl methacrylate–co-ethylene dimethacrylate). J. Chromatogr. A, 2001. 926: p. 255-264. 68. Zeng, Q., et al., Functional polymer affinity matrix for purifying hexahistidine-tagged recombinant protein. J. Chromatogr. A, 2001. 921: p. 197-205. 69. Hari, P.R., W. Paul, and C.P. Sharma, Adsorption of human IgG on Cu2+-immobilized cellulose affinity membrane: Preliminary study. J. biomed. Mater. Res., 2000. 50: p. 110-113. 70. Yang, L., et al., Immobilized iminodiacetic acid (IDA)-type Cu2+-chelatingmembrane afnity chromatography for purication ofbovine liver catalase. Biomed. Chromatogr., 1999. 13: p. 229-234. 71. Kubota, N., Y. Nakagawa, and Y. Eguchi, Recovery of serum proteins using cellulosic affinity membrane modified by Immobilization of Cu2+ Ion. J. Appl. Polymer Sci., 1996. 62: p. 1153-1160. 72. Yang, L., et al., Immobilized metal affinity composite membrane based on cellulose for separation of biopolymers. Science in China B, 1998. 41: p. 596-605. 73. Kennedy, J.F.a.M., E. H. M.,, Immobilization enzymes and cells. Chem. Emg. Prog.,, 1990: p. 81-89. 74. Belew, M., Immobilized metal ion affinity chromatography effect of solute structure, ligand density and salt concentration on the retentation of peptides. J. Chromatogr. A, 1990. 516: p. 333-354. 75. Bautista, F.M., Bravo, M. C., Campelo, J. M., Garcia, A., Luna , D., Marinas, and a.R. J. M., A. A.,, Covalent immobilization of acid phosphatase on amorphous AlPO4 support. Journal of Molecular Catalysis B: Enzymatic.,, 1999. 6(473-481). 76. Messing, R.A., Immobilized Enzymes For Industrial Reactors. Academic press.,, 1975. 2-3. 77. Veliky, I.A., and. Mclean, R. J. C.,, Immobilization biosystems. 1994: p. 1-128. 78. Bickerstaff, G.F., Immobilization of Enzymes and Cells. Humana press.,, 1997: p. 1-11. 79. 劉泰庠, 人造纖維概論. 徐氏基金會, (中華民國八十四年). 80. 許永綏, 纖維化學. 徐氏基金會, (中華民國八十九年). 81. Zou, H., Q. Luo, and D. Zhou, Affinity membrane chromatography for the analysis and purification of proteons. J. Biochem. Biophys. Methods, 2001. 49: p. 199-240. 82. 劉國詮, 生物工程下游技術. 曉園出版社, 1998. 83. Lihme, A., et al., Divinylsulphone-activated agarose formation of stable and non-leaking affinity matrices by immobilization of immunoglobulins and other proteins. J. Chromatogr., 1986. 376: p. 299-305. 84. Gelunaite, L., et al., Chelated mercury as a ligand in immobilized metal ion affinity chromatography of proteins. J. Chromatogr. A, 2000. 904: p. 131-143. 85. Shixiang, W.Q.B. and Y. Ruhua, Progress of Immobilized Metal-chelate Affinity Chromatography. South China University of Technology, Guangzhou Chinese Academy of Tropical Agricultural Sciences, Haikou. 86. Gaberc-Porekar, V. and V. Menart, Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods, 2001. 49: p. 335-360. 87. 蔡岳樺, 固定化金屬與heparin親和薄膜應用於板框型薄膜分離器之設計. 國立中興大學化學工程研究所碩士論文, 2000. 88. 蔡宜達, 板框型親和性薄膜分離技術之設計與研究. 國立中興大學化學工程研究所碩士論文, 1999. 89. Greg T. H., Bioconjugate techniques. Academic press., 1996. 90. Migneault I., D.C., Bertrand M. J., Waldron K. C.,, Glutaraldehyde :behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques,. 37: p. 790-802. 91. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976. 72: p. 248. 92. Hwang, G.-J., H. Ohya, and T. Nagai, Ion exchange membrane based on block copolymers. Part III: preparation of cation exchange membrane. J. Membr.Sci., 1999. 156: p. 61-65. 93. Reynolds, J.A. and M.J. Schlesinger, Conformational states of the subunit of Escherichia coli alkaline phosphate. Biochemistry, 1967. 6: p. 3552. 94. Finette, G.M.S., Q.-M. Mao, and M.T.W. Hearn, Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. J. Chromatogr. A, 1997. 763: p. 71-90. 95. Christopher, S.H., B. Aguiar, L. Martinez, and P. Setlow., In vitro and vivo oxidation of methionine residues in small, acid soluble spore protein from Bacillus species. J. Bacteriol., 1998. 180: p. 2604-2700. 96. Louwrier, A., and C. J. Knowles., The purification and characterization of a novel D(-)-specific carbamoylase enzyme from an Agrobacterium sp. Enzyme Microb. Technol., 1996. 19: p. 562-571. 97. Nanba, H., Y. Ikenaka, Y. Yamada, K. Yajima, M. Takano, and S. Takahashi., Isolation of Agrobacterium sp. KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Biosci. Biotechnol., 1998. 62: p. 875-881. 98. Brunschwig, E., and A. Darzins., A two-component T7 system for the overexpression of genes in Pseudomonas aeruginosa. Gene, 1992. 111: p. 35-41. 99. Ishikawa, T., Y. Mukohara, K. Watabe, S. Kobayashi, and H. Nakamura., Microbial conversion of DL-5-substituted hydantoins to the corresponding L-amino acids by Bacillus stearothermophilus strain NS1122A. Biosci. Biotech.Biochem., 1993. 58: p. 265-270. 100. Grifantini, R., C. Pratesi, G. Galli, and G. Grand., Topological mapping of the cysteine residues of N-carbamoyl-D-amino acid amidohydrolase and their role in enzymatic activity. J. Biol. Chem., 1996. 271: p. 9326-9331. 101. Ogawa, J., M. C. M. Chung, S. Hida, H. Yamada, and S. Shimizu., Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization. J. Biotechnol., 1994. 38: p. 11-19. 102. Kim, G.J., and H. S. Kim,, Optimization of the enzymatic synthesis of D-p- hydroxyphenylglycine from DL-5-substituted hydantoin using D-hydantoinase and N-carbamoylase. Enzyme Microb. Technol., 1995. 17: p. 63-67. 103. Buson, A., A. Negro, L. Grassato, M. Tagliaro, M. Basaglia, C. Grandi, A. and a.M.P.N. Fontana, Identification, sequencing and mutagenesis of the gene for a D-carbamoylase from Agrobacterium radiobacter. FEMS Microbiol.Lett., 1996. 145: p. 55-62. 104. Ogawa, J., S. Shimizu, and H. Yamada., N-carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c: purification and characterization. Eur. J. Biochem., 1993. 212: p. 685-691.zh_TW
dc.description.abstract本研究是以再生纖維薄膜(RC)利用epichlorohydrin (EPI)來改質官能基,再以不同鍵結方式將酵素DCase固定上去。四種固定方式分別為RC-EPI、RC-EPI-IDA (iminodiacetic acid)、RC-EPI-DA (diamine)-GA (glutaraldehyde)和RC-EPI-IDA-Fe3+來固定化酵素,其中以RC-EPI-DA-GA的固定化效果最好。 其最適化固定化條件為,5 ml EPI與20 ml 1.4 M NaOH 於24 ℃、150 rpm下反應14小時,之後將膜置於10 ml的1M 1,4-Diaminobutane (溶於1M Na2CO3, pH 11)於80 ℃、100 rpm下反應12小時,再將膜置於25 ml的 0.1% glutaraldehyde於pH 7.0、15℃、100 rpm下反應2小時,使用SEM分析薄膜表面型態,改質前後的薄膜有相似的結構和孔洞分佈。 以此最適化條件製作之RC-EPI-DA-GA膜探討DCase固定化之最佳條件,其結果為:10ml, 100mM Tris-HCl buffer (pH 7.0)溶液中含DCase和1mM DTT,與一片RC-EPI-DA-GA膜固定2.5小時。其固定化完可得12.80倍的純化倍率和17.815的高比活性。將固定化酵素和自由酵素相比,最適化溫度可從40℃提升到50℃。固定化最適反應pH 值為7-9與自由態相比(pH 9)相比,範圍增加兩個單位。於重複批次反應上,固定化 DCase 可維持16 個循環,依然保有約90%的初始活性,利用酵素固定化方法生產D-p-HPG,除了對環境的耐抗性有所提昇外,重複使用也是一大優點,可減少酵素使用量,更符合經濟效益。zh_TW
dc.description.abstractThe regenrated cellulose (RC) membane as solid matrix was modified via a series of reactions to conetruct the modified membrand for immobilization of enzyme (DCase). Four kinds of immobiization methods: RC-EPI、RC-EPI-IDA (iminodiacetic acid)、RC-EPI-DA (diamine)-GA (glutaraldehyde) and RC-EPI-IDA-Fe3+ were use to immobilized enzyme (DCase). The membrane with RC-EPI-DA-GA gave the best result for DCase immobilization and was selected in this study. The optimal preparation conditions were concluded as follows: for one RC membrane immersed in 20 ml, 1.4 M NaOH, 5 ml EPI and operated at 24 °C, 150 rpm for 14 h. After that, the membrane was immersed in 10ml of 1M 1,4-Diaminobutane (dissolved in 1M sodium carbonate) and allowed to react at 80℃ for 12h. Then, the membrane was immersed in 10ml of 0.1% glutaraldehyde (dissolved in 0.1M phosphate buffer) and allowed to react for 2h. From the surace morphologies scanned by SEM, the original membrane and the modified membrand had the similar structure and pore distribution. In order to evaluate the performance of RC-EPI-DA-GA for immobilization of DCase, the crude enzymes wewe immobilied to the RC-EPI-DA-GA in the presence of 10ml, 100mM Tris-HCl buffer (pH 7.0) containing 1mM DTT for 2.5h. A 12.8-fold DCase purification was obtained. Compared to the free enzyme, the optimal reaction temperature of immobilized DCase was increased from 40℃ to 50℃. While the optimal pH of DCase was increased from pH 7.0 to pH 9.0. While the immobilized DCase retained 90% of the initial activity after 16-time repeated use. It is very feasible to use the immobilized DCase in industrial application.zh_TW
dc.description.tableofcontents誌謝辭 I 中文摘要 II Abstract III 表目錄 VII 圖目錄 VIII 一、緒論 1 1.前言 1 2.研究動機 3 二、文獻回顧 6 (一) DCase 固定化 6 (二)酵素固定化 9 1.固定化方法 9 2.固定化載體之種類 12 3.共價鍵結法常用之載體 13 (三)薄膜分離技術 17 1.纖維素的種類 17 2.再生纖維素薄膜 18 (四)固定化親和載體 20 1.活化劑 20 2.延伸臂 20 3.戊二醛(Glutaraldehyde, GA) 21 三、材料與方法 23 (一)實驗設備 23 1.實驗儀器 23 2. 實驗藥品 24 (二)載體 26 (三)菌種 27 實驗菌株 27 (四)培養基組成 27 1.前培養培養基 27 2.主培養培養基 27 3.酵素液的製備 29 (五)固定化薄膜的製備 30 (六)分析方法 32 1.蛋白質濃度的量測 32 2.酵素活性的量測 34 3.薄膜含水率的量測 35 4.電泳分析 35 四、實驗結果與討論 38 (一)固定化薄膜的製備 38 1.不同daimine對酵素固定量的影響 38 2.製備條件對薄膜表面形態的影響 40 3. ATR分析薄膜表面之官能基 42 4.非特定吸附對酵素吸附量的影響 43 (二)批式固定條件的選擇 45 1. Glutaraldehyde濃度與時間對固定時影響 45 2.酵素固定時溫度的影響 47 3. DCase酵素固定時間的影響 48 4. Loading buffer對固定DCase活性之影響 50 5.鹽類種類的影響 51 6.轉速對固定化DCase影響 52 (三)固定化酵素之性質 53 1.最適反應溫度探討 53 2.熱安定性探討 54 3.最適化pH探討 55 4.pH安定性探討 57 5.存放安定性 59 6.固定化酵素之重複使用性 61 (五)酵素動力學 67 第五章、結論及未來展望 69 (一)結論 69 (二)未來展望 70 第六章、參考文獻 71zh_TW
dc.subjectN-carbamoyl-D-amino acid amidohydrolaseen_US
dc.title固定化酵素N-carbamoyl-D-amino acid amidohydrolase於再生纖維膜上之效率探討zh_TW
dc.titleStudy on Immobilization of N-carbamoyl-D-amino acid amidohydrolase with regenerated cellulose membraneen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.