Please use this identifier to cite or link to this item:
標題: 聚偏二氟乙烯薄膜固定化脂肪分解酵素之研究
Immobilization of Candida rugosa Lipase on Polyvinylidene Fluoride Membrane
作者: 游承璋
Yu, Cheng-Chung
關鍵字: Lipase;脂肪分解酵素;Immobilization enzyme;Epichlorohydrin (EPI);Polyvinylidene Fluoride (PVDF);固定化酵素;環氧氯丙烷(EPI);聚偏二氟乙烯(PVDF)
出版社: 化學工程學系所
引用: 1. Wu, X.Y., S. Jääskeläinen, and Y.-Y. Linko, An investigation of crude lipases for hydrolysis, esterification, and transesterification. Enzyme and Microbial Technology, 1996. 19(3): p. 226-231. 2. Jaeger, K.-E. and M.T. Reetz, Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 1998. 16(9): p. 396-403. 3. Gardossi, L., D. Bianchi, and A. Klibanov, Selective acylation of peptides catalyzed by lipases in organic solvents. Journal of the American Chemical Society 1991. 113: p. 6328-6329. 4. Wang, C.-S. and J.A. Hartsuck, Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1993. 1166(1): p. 1-19. 5. Cao, L., Carrier-bound Immobilized Enzymes. Principles, Applications and Design, 2005: p. 224. 6. Wang, D., K. Li, and W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane Science, 1999. 163(2): p. 211-220. 7. Wang, D., K. Li, and W.K. Teo, Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. Journal of Membrane Science, 2000. 178(1-2): p. 13-23. 8. Khayet, M., et al., Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration. Polymer, 2002. 43(14): p. 3879-3890. 9. Lin, D.-J., et al., Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system. Polymer, 2003. 44(2): p. 413-422. 10. Lin, D.-J., et al., Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science, 2006. 274(1-2): p. 64-72. 11. Hellman, D.J., A.R. Greenberg, and W.B. Krantz, A novel process for membrane fabrication: thermally assisted evaporative phase separation (TAEPS). Journal of Membrane Science, 2004. 230(1-2): p. 99-109. 12. Jian, K. and P.N. Pintauro, Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations. Journal of Membrane Science, 1997. 135(1): p. 41-53. 13. Deshmukh, S.P. and K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. Journal of Membrane Science, 1998. 150(1): p. 75-85. 14. Preparation of PVDF hollow-fibre membranes. Membrane Technology, 2001. 2001(139): p. 16-16. 15. Wang, D., W.K. Teo, and K. Li, Removal of H2S to ultra-low concentrations using an asymmetric hollow fibre membrane module. Separation and Purification Technology, 2002. 27(1): p. 33-40. 16. Sharma, R., Y. Chisti, and U.C. Banerjee, Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001. 19(8): p. 627-662. 17. Macrae, A.R., Lipase-catalyzed interesterification of oil and fats. J. Am. Oil Chem. Soc, 1981. 60: p. 291-294. 18. Jaeger, K.-E. and M.T. Reetz, Microbial lipases form versatile tools forbiotechnology. Trends in Biotechnology, 1998. 16: p. 396-403. 19. RJ., K., Elucidation Structure-mechanism Relationships in Lipases:Prospects for Prediction and Engineering Catalytic Properties. Trends in Biotechnology, 1994 Nov. 11: p. 464-472. 20. Pencreac''h, G. and J.C. Baratti, Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology, 1996. 18(6): p. 417-422. 21. 陳盈君, Lipase與POP改質蒙脫土之交互作用及其酵素活性探討. 國立中興大學化工所碩士論文, 2006: p. 6. 22. Jaeger, K.-E., et al., Bacterial lipases. FEMS Microbiology Reviews, 1994. 15(1): p. 29-63. 23. ROBERT VERGER, M.C.E.M., AND GERARD H. DE HAAS, Action of Phospholipase A at Interfaces. The Journal of Biological Chemistry, 1973. 248: p. 4023-4034. 24. Brzozowski, A.M., et al., A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 1991. 351(6326): p. 491-494. 25. Pencreac''h, G. and J.C. Baratti, Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations. Enzyme and Microbial Technology, 2001. 28(4-5): p. 473-479. 26. Fernandez-Lafuente, R., et al., Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 1998. 93(1-2): p. 185-197. 27. Sörensen, M.H., et al., Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate mesoporous carrier. Journal of Colloid and Interface Science, 2010. 343(1): p. 359-365. 28. A. Kotha, L.S., C.R. Rajan, S. Ponrathnam, K.K. Kumar, G.R. Ambekar and J.G. Shewale, Adsorption and expression of penicillin G acylase immobilized onto methacrylate polymers generated with varying pore generating solvent volume. Applied Biochemistry and Biotechnology, 1991. 30: p. 297. 29. A. Naidja, P.M.H.a.J.-M.B., Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. . Journal of Molecular Catalysis A:Chemical, 1997. 115: p. 305. 30. J. He, X.L., D.G. Evans, X. Duan and C. Li, A new support for the immobilization of penicillin acylase. Journal of Molecular Catalysis B: Enzymatic, 2000. 11: p. 45. 31. 田蔚城, 生物技術的發展與應用. 九州圖書文物有限公司, 1998. 32. 陳國誠, 生物固定化技術與產業應用. 茂昌圖書有限公司, 2000. 33. 潘建亮, 固定化盤尼西林去醯基酵素反應動力學建模及其兩水相系統分離反應之探討. 國立成功大學化學工程研究所博士論文, 2005. 34. Hjertén, S., et al., Gradient and isocratic high-performance hydrophobic interaction chromatography of proteins on agarose columns. Journal of Chromatography A, 1986. 359: p. 99-109. 35. 呂鋒洲 and 林仁混, 基礎酵素學. 聯經出版事業公司, 1991. 第十八章. 36. Goldstein, L., A new polymier carrier for immobilization of proteins of water insoluble derivaties of pepsin and trypsin. Biochimica Et Biophysica Acta Enzymology, 1973. 327: p. 132-137. 37. Huang, X.-J., A.-G. Yu, and Z.-K. Xu, Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresource Technology, 2008. 99(13): p. 5459-5465. 38. Ye, P., et al., Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials, 2005. 26(32): p. 6394-6403. 39. Huang, X.-J., D. Ge, and Z.-K. Xu, Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal, 2007. 43(9): p. 3710-3718. 40. Li, S.-F., J.-P. Chen, and W.-T. Wu, Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2007. 47(3-4): p. 117-124. 41. Hung, T.-C., et al., Binary immobilization of Candida rugosa lipase on chitosan. Journal of Molecular Catalysis B: Enzymatic, 2003. 26(1-2): p. 69-78. 42. Huang, X.-J., et al., Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2009. 57(1-4): p. 250-256. 43. Jeganathan, J., A. Bassi, and G. Nakhla, Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation. Journal of Hazardous Materials, 2006. 137(1): p. 121-128. 44. Yilmaz, E., M. Sezgin, and M. Yilmaz, Enantioselective hydrolysis of rasemic naproxen methyl ester with sol-gel encapsulated lipase in the presence of sporopollenin. Journal of Molecular Catalysis B: Enzymatic, 2010. 62(2): p. 162-168. 45. 邱少華, 幾丁聚醣在固定化技術上之應用. 國立清華大學博士論文, 2003. 46. Martinek, K., et al., The principles of enzyme stabilization I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica et Biophysica Acta (BBA) - Enzymology, 1977. 485(1): p. 1-12. 47. 廖德章, Organic Chemistry. 2008: p. 119-143. 48. Guo, W. and E. Ruckenstein, Crosslinked glass fiber affinity membrane chromatography and its application to fibronectin separation. Journal of Chromatography B, 2003. 795(1): p. 61-72. 49. 陳善群, 疏水官能基玻璃纖維薄膜之製備及其固定盤尼西林醯胺酵素之穩定性. 國立中興大學碩士學位論文, 2007: p. 5. 50. Chiou, S.-H. and W.-T. Wu, Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 2004. 25(2): p. 197-204. 51. Li, Y., et al., Pore size of macroporous polystyrene microspheres affects lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2010. In Press, Corrected Proof. 52. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1-2): p. 248-254. 53. Hwang, G.-J., H. Ohya, and T. Nagai, Ion exchange membrane based on block copolymers. Part III: preparation of cation exchange membrane. Journal of Membrane Science, 1999. 156(1): p. 61-65. 54. Chiu, H.-C., et al., Adsorptive removal of anionic dye by inorganic-organic hybrid anion-exchange membranes. Journal of Membrane Science, 2009. 337(1-2): p. 282-290. 55. Blanco, R.M., et al., Ethanol improves lipase immobilization on a hydrophobic support. Journal of Molecular Catalysis B: Enzymatic, 2007. 47(1-2): p. 13-20. 56. Guo, Z., S. Bai, and Y. Sun, Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology, 2003. 32(7): p. 776-782. 57. 張簡志強, 應用金屬親和薄膜分離純化盤尼西林醯胺酵素. 國立中興大學碩士學位論文, 2003: p. 75. 58. Tsai, Y.-H., M.-Y. Wang, and S.-Y. Suen, Purification of hepatocyte growth factor using polyvinyldiene fluoride-based immobilized metal affinity membranes: equilibrium adsorption study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002. 766(1): p. 133-143. 59. Barros, R.M., et al., Hydrolysis of [alpha]-lactalbumin by cardosin A immobilized on highly activated supports. Enzyme and Microbial Technology, 2003. 33(7): p. 908-916. 60. Burteau, N., S. Burton, and R.R. Crichton, Stabilisation and immobilisation of penicillin amidase. FEBS Letters, 1989. 258(2): p. 185-189. 61. Lamas, E.M., et al., Hydrolysis of whey proteins by proteases extracted from Cynara cardunculus and immobilized onto highly activated supports. Enzyme and Microbial Technology, 2001. 28(7-8): p. 642-652. 62. Magnan, E., et al., Immobilization of lipase on a ceramic membrane: activity and stability. Journal of Membrane Science, 2004. 241(1): p. 161-166. 63. Tukel, S.S. and O. Alptekin, Immobilization and kinetics of catalase onto magnesium silicate. Process Biochemistry, 2004. 39(12): p. 2149-2155. 64. Monsan, P., Optimization of glutaraldehyde activation of a support for enzyme immobilization. Journal of Molecular Catalysis, 1978. 3(5): p. 371-384. 65. H., G.T., Bioconjugate techniques. Academic press, 1996. 66. Moreno, J., et al., Organic reactions catalyzed by immobilized lipases. Part I. Hydrolysis of 2-aryl propionic and 2-aryl butyric esters with immobilized Candida cylindracea lipase. Journal of Molecular Catalysis A: Chemical, 1995. 95(2): p. 179-192. 67. Hu, H.-L., et al., Purification of VP3 protein of infectious bursal disease virus using nickel ion-immobilized regenerated cellulose-based membranes. Journal of Chromatography B, 2006. 840(2): p. 76-84. 68. Deng, H.-T., et al., Adsorption immobilization of Candida rugosa lipases on polypropylene hollow fiber microfiltration membranes modified by hydrophobic polypeptides. Enzyme and Microbial Technology, 2004. 35(5): p. 437-443. 69. Palomo, J.M., et al., Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. Journal of Molecular Catalysis B: Enzymatic, 2002. 19-20: p. 279-286. 70. Kuts, P.S., L.S. Kalinina, and I.F. Pikus, Hygroscopic properties of cellulose materials for electrical insulation. Journal of Engineering Physics and Thermophysics, 1973. 24: p. 617-621. 71. Ruckenstein E and W. X, Lipase immobilized on hydrophobic porous polymer supports prepared by concentrated emulsion polymerization and their activity in the hydrolysis of triacylglycerides. Biotechnol Bioeng, 1993. 42: p. 821-825. 72. Bastida A, S.P., Armisen P, Fernandez-Lafuente R, Huguet J, Guisan JM., A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports Biotechnol Bioeng, 1998. 58: p. 486-495. 73. 李昇峰, 聚丙烯腈奈米纖維薄膜於脂肪分解酵素固定化之應用. 國立成功大學化學工程博士論文, 2009. 74. 方隆誠, 以酵素清洗超濾薄膜過濾腐植酸之不可逆積垢與分析. 國立台灣大學環工所碩士論文, 2006: p. 16. 75. Chen, J.-P. and Y.-P. Chiang, Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid. Journal of Membrane Science, 2006. 270(1-2): p. 212-220. 76. Wang, Z.-G., et al., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic, 2009. 56(4): p. 189-195. 77. Wang, W.F., T.L. Tan, and P.P. Ong, The [nu]2and [nu]8+ [nu]10Bands of CF2=CH2. Journal of Molecular Spectroscopy, 1997. 181(1): p. 11-17. 78. Haifang, W., et al., Spectral analysis on the surface molecular structure of modified polyvinylidene fluoride membrane. Applied Surface Science, 2006. 252(24): p. 8494-8498. 79. Yang, G., et al., Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B: Biointerfaces, 2010. 78(2): p. 351-356.
本研究應用聚偏二氟乙烯薄膜 (Polyvinylidine Fluoride Membrane,PVDF)為固體基材。首先用1,4-diaminobutane (DA)取代薄膜上面氟離子,讓PVDF薄膜帶有胺基(NH2)之官能基,再分別用GA、EPI、TCT去改質。

在研究4種固定化方式(i.e., Native PVDF, GA, EPI, TCT),以Epichlorohyrin (EPI)為交聯劑之總體表現最佳,搭配1.5M的氫氧化鈉(NaOH)活化下,薄膜因活化產生Nanoparticles以增加薄膜接觸面積,使得活性表現最高。且比較四種固定化方式,而Epichlorohydrin(EPI)改質的Activity Yield最高。將活性與基質濃度關係以Lineweaver-Burk作圖,得到游離酵素之Vmax為59.4U/mg;固定化酵素之Vmax為57.8U/mg,其Activity Yield為97.1%。

本研究應用疏水性較強的聚偏二氟乙烯薄膜 (PVDF),其疏水程度約為120度左右,且以EPI為改質的PVDF在使用15次後,仍有88%的轉化率;且保存30天還可以維持92%的殘餘活性,高穩定性符合經濟的效益。

The Polyvinylidene Fluoride Membrane (PVDF) was used as solid matrix for lipase immobilization. The modification was conducted by coupling 1,4-diaminobutane (DA) as the spacer, followed by binding the active reagents (i.e., GA, EPI, TCT) on the surface of PVDF.

Study on four immobilization method (i.e., Native PVDF, GA, EPI, TCT), Use EPI-modified PVDF showed the best effect on lipase immobilization. When using 1.5M Sodium hydroxide (NaOH) for coupling Epichlorohydrin (EPI) on PVDF, the membrane surface was observed to form many nanoparticles. It is expected that the nanoparticle provides huge specific surface areas for lipase to be immobilized. In comparison of the kinetic parameter, Vmax, of the immobilizaed lipase is similar to that of the free lipase. The activity yield of the immobilized lipase was 97.1% of the free enzyme under the optimal immobilization conditions.

The EPI-modified PVDF displayed a dramatic improvement in lipase performance in all aspects. It showed a 92% residual activity for 30-days storage and a 88% activity reservation for a 15-times repeated use.
其他識別: U0005-0408201023175300
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.