Please use this identifier to cite or link to this item:
標題: 以商用紙質電木板作為碳源利用裂解法及化學氣相沉積法合成奈米碳材
Utilizing the commercial paper phenolic board to synthesize carbon nanomaterials by thermal pyrolysis and chemical vapor deposition
作者: 林易緯
Lin, Yi-Wei
關鍵字: Carbon nanomaterials;奈米碳材;Printed circuit board;Recycle;Green technology;印刷電路板;酚醛樹酯
出版社: 化學工程學系所
引用: [1] T. V. Hughes, and C. R. Chambers, "Manufacture of carbon filaments", US Patent No. 405, (1889). [2] R. Iley, and H. L. Riley, "The deposition of carbon on vitreius silica", J. Chem. Soc., pp. 1362-1366 (1948). [3] R. T. K. Baker, "Catalytic growth of carbon filaments", Carbon, Vol. 27, pp. 315-323 (1989). [4] S. Iijima, "Helical microtubles of graphitic carbon", Nature, Vol. 354, pp. 56-58 (1991). [5] S. H. Yoon, C. W. Park, H. Yang, Y. Korai, I. Mochida, R. T. K. Baker , and N. M. Rodriguez, "Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries", Carbon, Vol. 42, pp. 21-32 (2004). [6] K. Suzuki, T. Iijima, and M. Wakihara, "Electrode characteristics of pitch-based carbon fiber as an anode in lithium rechargeable battery", Electr. Act., Vol. 44, pp. 2185-2191 (1999). [7] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. S. Dresselhaus, "Vapor-grown carbon fibers (VGCFs) Basic properties and their battery applications", Carbon, Vol. 39, pp. 1287-1297 (2001). [8] T. Morita, and N. Takami, "Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion", Electr. Act., Vol. 49, pp. 2591-2599 (2004). [9] R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado, R. Stoyanov, E. Zhecheva, and C. Merino, "Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study", Carbon, Vol. 42, pp. 2153-2161 (2004). [10] A. Yokoyama, Y. Sato, Y. Nodasaka, and S. Yamamoto, "Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats", Nano letter, Vol. 5, pp. 157-161 (2005). [11] R. L. Pricea, M. C. Waidb, K. M. Haberstroha, and T. J. Webstera, "Selective bone cell adhesion on formulations containing carbon nanofibers", Biomaterials, Vol. 24, pp. 1877-1887 (2003). [12] M. Tsuji, M. Kubokawa, R. Yano, and N. Miyamae, "Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells", Langmuir, Vol. 23, pp. 387-390 (2007). [13] Y. L. Hsin, K. C. Hwang, and C. T. Yeh, "Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells", J. Am. Chem. Soc., Vol. 129, pp. 9999-10010 (2007). [14] V. Vamvakaki, K. Tsagaraki, and N. Chaniotakis, "Carbon nanofiber-based glucose biosensor", Anal. Chem., Vol. 78, pp. 5538-5542 (2006). [15] H. Li, J. Li, and C. Gu, "Local field emission from individual vertical carbon nanofibers grown on tungsten filament", Carbon, Vol. 43, pp. 849-853 (2005). [16] J. M. Blackman, J. W. Patrick, and A. Arenillas, "Activation of carbon nanofibres for hydrogen storage", Carbon, Vol. 44, pp. 1376-1385 (2006). [17] H. Zhu, X. Li, L. Ci, C. Xu, D. Wu, and Z. Mao, " Hydrogen storage in heat-treated carbon nanofibers prepared by the vertical floating catalyst method", Mater. Chem. Phys., Vol. 78, pp. 670-675 (2003). [18] R. Bacon, "Growth, structure, and properties of graphite whiskers", J. Appl. Phys., Vol. 31, pp. 283-290 (1960). [19] H. W. Kroto, J. R. Heath, S. C. O Brien, R. F. Curl, R. E. Smalley, "C60:Buckminsterfullerene", Nature, Vol. 318, pp. 162-163 (1985). [20] L. P. Biro , C. A. Bernardo, G. G. Tibbetts, and P. Lambin, "Carbonfilaments and nanotubes: common origins, differing applications", Dorecht/Boston/London Patent, (2001). [21] 李元堯, "奈米碳簇材料簡介", 化工技術, Vol. 17, pp. 98 (2009). [22] Ph. Serp, R. Feurer, Ph. Kalck, Y. Kihn, J. L. Faria, and J. L. Figueiredo, "A chemical vapour deposition process for the production of carbon nanospheres", Carbon, Vol. 39, pp. 621-626 (2001). [23] B. Xu, J. Guo, X. Wang, X. Liu, and H. Ichinose, "Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution", Carbon, Vol. 44, pp. 2631-2634 (2006). [24] T. Kizuka, R. Kato, and K. Miyazawa, "Structure of hollow carbon nanocapsules synthesized by resistive heating", Carbon, Vol. 47, pp. 138-144 (2009). [25] M. Inagaki, "Discussion of the formation of nanometric texture in spherical carbon bodies", Carbon, Vol. 35, pp. 711-713 (1997). [26] M. Endo, and H. W. Kroto, "Formation of carbon nanofiber", J. Phys. Chem. B., Vol. 96, pp. 6941-6944 (1992). [27] N. M. Rodriguez, A. Chambers, and R. T. K. Baker, "Catalytic engineering of carbon nanostructures", Langmuir, Vol. 11, pp. 3862-3866 (1995). [28] M. Endo, Y. A. Kim, T. Hayashi, and Y. Fukai, "Structural characterization of cup-stacked-type nanofibers with an entirely hollow core", Appl. Phys. Lett., Vol. 80, pp. 1267-1269 (2002). [29] Y. Qin, Q. Zhang, and Z. Cui, "Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene", Journal of Catalysis, Vol. 223, pp. 389-394 (2004). [30] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes", Carbon, Vol. 33, pp. 883-891 (1995). [31] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, "Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene", Journal of Catalysis, Vol. 6, pp. 51-62 (1972). [32] A. Oberlin, and M. Endo, "Filamentous growth of carbon through benzene decomposition", J. Crystal Growth, Vol. 32, pp. 335-349 (1976). [33] T. Baird, J. R. fryer, and B. Grant, "Carbon formation on iron and nickel foils by hydrocarbon pyrolysisreactions at 700°C", Carbon, Vol. 12, pp. 591-602 (1974). [34] J. J. Wang, M. Y. Zhu, R.A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway, "Free-standing subnanometer graphite sheets", Appl. Phys. Lett., Vol. 85, pp. 1265-1267 (2004). [35] J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B.C. Holloway, "Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition", Carbon, Vol. 42, pp. 2867-2872 (2004). [36] M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, and X. Zhao, "A mechanism for carbon nanosheet formation", Carbon, Vol. 45, pp. 2229-2234 (2007). [37] C. M. Chen, P. Y. Shih, and Y. W. Lin, "Synthesis of nanostructured carbon Materials on a Tin thin film using phenol formaldehyde as the carbon source", Journal of Elecrtronic Materials, Vol. 38, pp. 193-199 (2009). [38] J. Du, Z. Liu, Z. Li, B. Han, Z. Sun, and Y. Huang, "Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route", Materials Letters, Vol. 59, pp. 456-458 (2005). [39] J. M. She, and Y. T. Feng, "Formation of flower-like carbon nanosheet aggregations and their electrochemical application", J. Phys. Chem. C, Vol. 112, pp. 13114-13120 (2008). [40] Y. H. Wang, S. C. Chiu, K. M. Lin, and Y. Y. Li, "Formation of carbon nanotubes from polyvinyl alcohol using arc-discharge method", Carbon, Vol. 42, pp. 2535-2541 (2004). [41] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic growth of single-walled nanotubes by laser vaporization", Chemical Physics Letters, Vol. 243, pp. 49-54 (1995). [42] A. Chambers, T. Nemes, and N. M.Rodriguez, "Catalytic behavior of graphite nanofiber supported nickel particles. 1. comparison with other support media", J. Phys. Chem. B., Vol. 102, pp. 2251-2258 (1998). [43] M. Ishioka, T. Okada, K. Matsubara, and M. Endo, "Formation of vaper-grown carbon fibers in CO-CO2-H2 mixtures, II.influen of catalyst", Carbon, Vol. 30, pp. 865-868 (1992). [44] V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, and P. Lambin, "Catalytic production and purification of nantubules having fullerene-scale diameters", Carbon, Vol. 33, pp. 1727-1738 (1995). [45] M. Jayasankar, R. Chand, S. K. Gupta, and D. Kunzru, "Vapor-grown carbon fibers from benzene pyrolysis", Carbon, Vol. 33, pp. 253-258 (1995). [46] G. G. Kuvshinov, Y. I. Mogilnykh, and D. Guvshinov, "Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition", Carbon, Vol. 37, pp. 1239-1246 (1999). [47] M. Ishiok, T. Okada, and K. Matsubara, "Formation of vaper-grown carbon fibers in CO-CO2-H2 mixtures, I.influen of Carrier gas composition", Carbon, Vol. 30, pp. 859-863 (1992). [48] G. G. Tibbetts, and D. W. Gorkiewvzz, "A new reactor for growing carbon fibers from liquid and vapor phase hydrocarbons", Carbon, Vol. 31, pp. 809-814 (1993). [49] M. Ishiok, T. Okada, and K. Matsubara, "Formation and characteristics of vapor grown carbon fibers prepared in linz-donawitz converter gas", Carbon, Vol. 30, pp. 975-979 (1992). [50] G. C. Tibbetts, C. A. Bernardo, and D. W. Gorkiewicz, "Role of sulfur in the production of carbon fibers in the vapor phase", Carbon, Vol. 32, pp. 569-576 (1994). [51] A. Hoquea, M. K. Alamb, and G. G. Tibbettsc, "Synthesis of catalyst particles in a vapor grown carbon fiber reactor", Chem. Eng. Sci., Vol. 56, pp. 4233-4234 (2001). [52] H. M. Cheng, F. Li, G. Su, and H. Y. Pan, "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons", Appl. Phys. Lett., Vol. 72, pp. 3282-3284 (1998). [53] L. Ci, Y. Li, B. Wei, J. Liang, C. Xu, and D. Wu, "Preparation of carbon nanofibers by the floating catalyst method", Carbon, Vol. 38, pp. 1933-1937 (2000). [54] C. Singh, T. Quested, and C. B. Boothroyd, "Synthesis and characterization of carbon nanofibers produced by the floating catalyst method", J. Phys. Chem. B., Vol. 106, pp. 10915-10922 (2002). [55] P. Vinduska, J. Janik, and D. Buc, "Investigation of conditions for preparation of oriented nanotubes at department of microelectronics in a modified plasma-enhanced hot filament chemical vapor deposition reactor", Physica E, Vol. 40, pp. 44-58 (2008). [56] D. Luxembourg, G. Flamant, and D. Laplaze, "Solar synthesis of single-walled carbon nanotubes at medium scale", Carbon, Vol. 43, pp. 2302-2310 (2005). [57] T. C. Liu, and Y. Y. Li, "Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method", Carbon, Vol. 44, pp. 2045-2050 (2006). [58] R. Katoh, Y. Tasaka, E. Sekreta, M. Yumura, F. Ikazaki, Y. Kakudate, and S. Fujiwara, "Sonochemical production of a carbon nanotube", Ultrasonics Sonochemistry, Vol. 6, pp. 185-187 (1999). [59] K. ouchi, "Infra-red study of structural changes during the pyrolysis of a phenol-formaldehyde resin", Carbon, Vol. 4, pp. 59-66 (1966). [60] K. A. Trick, and T. Saliba, "Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite", Carbon, Vol. 33, pp. 1509-1515 (1995). [61] A. Oya, and N. Kasahara, "Preparation of thin carbon fibers from phenol–formaldehyde polymer micro-beads dispersed in polyethylene matrix", Carbon, Vol. 38, pp. 1141-1144 (2000). [62] K. Wang, W. Zhang, and R. Phelan, "Direct fabrication of well-aligned free-Standing mesoporous carbon nanofiber arrays on silicon substrates", J. Am. Chem. Soc., Vol. 129, pp. 13388-13389 (2007). [63] I. Stamatin, A. Morozan, A. Dumitru, V. Ciupina, G. Prodan, J. Niewolski, and H. Figiel, "The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins", Physica E, Vol. 37, pp. 44-48 (2007). [64] C. M. Chen, and P. Y. Shih, "A peculiar composite structure of carbon nanofibers growing on a microsized tin whisker", Journal of Materials Research, Vol. 23, pp. 2668-2673 (2008). [65] Y. W. Lin, P. Y. Shih, and C. M. Chen, "A current-induced localized heating technique for fabrication of carbon nanomaterials", Journal of Alloys and Compounds, Vol. 492, pp. 521 (2009). [66] N. Sano, H. Akazawaa, T. Kikuchib, and T. Kankia, "Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen ", Carbon, Vol. 41, pp. 2159-2162 (2003). [67] C. W. Huang, S. C. Chiu, W. H. Lin, and Y. Y. Li, "Preparation and characterization of porous carbon nanofibers from thermal decomposition of poly(ethylene glycol)", J. Phys. Chem. C, Vol. 112, pp. 926-931 (2008). [68] 林豐智及永山時男, 日本化學會誌, Vol. 6, pp. 1050 (1984). [69] R. Raja, T. Khimyak, J. M. Thomas, S. Hermans, and B. F. G. Johnson, "Single-step, highly active, and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds", Angew.Chem. Int. Ed., Vol. 40, pp. 2638-2642 (2001). [70] R. Raja, G. Sankar, S. Hermans, D. S. Shephard, S. Bromley, J. M. Thomas, and B. F. G. Johnson, "Preparation and characterization of highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst.", Chem. Commun., Vol. 16, pp. 1571-1572 (1999). [71] C. M. Chen, Y. M. Dai, J. G. Huang, and J. M. Jehng, "Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method", Carbon, Vol. 44, pp. 1808-1820 (2006). [72] 吳榮宗, "工業觸媒概論". 新竹市: 國興出版社, (1989). [73] 顏秀慧, "沸石對揮發性有機物吸附行為之研究", 國立台灣大學環境工程研究所博士論文, pp. (1998). [74] A. Okamoto, and H. Shinohara, "Control of diameter distribution of single-walled carbon nanotubes using the zeolite-CCVD method at atmospheric pressure", Carbon, Vol. 43, pp. 431-436 (2005). [75] P. Ciambelli, D. Sannino, M. Sarno, A. Fonseca, and J. B. Nagy, "Selective formation of carbon nanotubes over Co-modified beta zeolite by CCVD", Carbon, Vol. 43, pp. 631-640 (2005). [76] A. Lu, W. Schmidt, S. Tatar, B. Spliethoff, J. Popp, W. Kiefer, and F. Schuth, "Formation of amorphous carbon nanotubes on ordered Mesoporous silica support", Carbon, Vol. 43, pp. 1811-1814 (2005). [77] C. W. Huanga, H. C. Wua, W. H. Lina, and Y. Y. Li, "Temperature effect on the formation of catalysts for growth of carbon nanofibers", Carbon, Vol. 47, pp. 795-803 (2009). [78] Y. W. Lin, P. Y. Shih, and C. M. Chen, "A current-induced localized heating technique for fabrication of carbon nanomaterials", Journal of Alloys and Compounds, Vol. 492, pp. 521-524 (2010).
印刷電路板(printed circuit board, PCB)是由絕緣材料與導體所組成,依據結構、製程、材質、外觀、物理特性、應用等可以分成多種種類。印刷電路板的主要功能為電器連接及承載元件,故其需具備耐熱、剛強度、低電阻等等特性。隨著電子產品的迅速進步,設計變更以及零件更新都需要重新訂製所需的電路板。相對的,將會有大量的電子產品遭到淘汰,這些淘汰掉的電路板將會對環境造成一定量的破壞。由於電路板上層的金屬價格貴重,通常會以特定蝕刻液回收貴金屬,並還原再利用。而下層的高分子基板由於價格低廉,一般都是送至回收場銷毀並無太大的利用價值。本研究中使用三種不同方式的觸媒,並搭配化學氣相沉積法以即熱裂解法合成奈米碳材,提供一電路板回收再利用之綠色技術。

A bilayer copper (Cu)/polymer laminate is the prototype of printed circuit board (PCB). Owing to possess the characteristics of low cost and easy fabrication, PCBs have been widely manufactured and used in a variety of electronic products. But the lifetime of consumer electronic products is usually very short. They become out-of-date very quickly and then are abandoned. Unfortunately, this produces large amounts of waste electronic products including PCBs which might have detrimental effects on the environment. To reduce the detrimental effects, some metallic components, such as Cu used in conductive traces on PCBs, are recycled and reused. Polymer materials, such as the insulating substrates of PCBs, are also widely used in consumer electronic products. However, the recycling of polymer materials is not currently put into practice. Therefore, development of a suitable recycling technique for the polymer component is urgent. This study demonstrates that the polymer component might be a good carbon source for the synthesis of carbon nanomaterials. Different kinds of catalysts were used to synthesize valuable carbon nanomaterials from the commercial paper phenolic (PP) board.
First of all, we used NiCl2(aq) as the catalyst precursor and PP board as the carbon source. Carbon nanomaterials were produced by pyrolyzing PP board and NiCl2¬ at temperatures 800, 900 and 1000℃, respectively, under N2 atmosphere. The tubular and platelet-like nanofibers were synthesized at 800℃, while the herringbone-like nanofibers and carbon nanospheres were found at 900℃. Other than the above, we synthesized two different nanofibers, one is platelet-like and the other is with two graphite staked tubewalls at 1000℃. With increase the temperature, the graphitization degree gets better.
Second, the nano-Ni/Mg alloy has been used to grow carbon nanomaterials under various reaction conditions such as reaction temperature, gas flow rate, hydrogen addition, amount of PP board, and carbon source, in order to obtain the optimum growth condition. We could get highest yield and well graphite at 750℃, 100sccm, 100% hydrogen with 10g PP board.
Finally, we used zeolite-supported catalysts (such as Ni, Co, Fe, Ni/Mg, and Cu) to synthesize carbon nanomaterials in order to observe the influence of the catalyst size. The CNTs and CNFs were synthesized at 800℃ using nickel as the catalyst, while the CNFs were found at all the temperatures with Ni-Mg. When we used Co as the catalyst, we just could get few carbon nanotubes at 1000℃. Fe as catalyst can synthesize straight CNTs, CNFs, and bamboo-like carbon nanotube between 800℃ and 1000℃.
其他識別: U0005-0607201017365400
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.