Please use this identifier to cite or link to this item:
標題: 共護蛋白在大腸桿菌雙精胺酸轉位系統轉位蛋白質角色之研究
Roles of chaperones on protein translocation via the Tat pathway in Escherichia coli
作者: 謝馨誼
Hsieh, Hsin-Yi
關鍵字: twin-arginine translocation (Tat) system;雙精胺酸轉位系統;signal peptides;chaperones;periplasm;訊息導引胜肽共表現蛋白;細胞周質
出版社: 化學工程學系所
引用: [1]Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry.Appl Microbiol Biotechnol 65(4):363-72. [2]Dyck MK., Lacroix D, Pothier F, Sirard MA. 2003. Making recombinant proteins in animals--different systems, different applications. Trends Biotechnol 21(9):394-9. [3]Marino MH. 1989. Expression systems for heterologous protein production. BioPharm. 2:18-33. [4]Rai M, Padh H. 2001. Expression systems for production of heterologous proteins. Current Science 80(9):1121-28. [5]Georgiou G, Valax P. 1996. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190-7. [6]Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512-38. [7]Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399-408. [8]Bessette PH., Aslund F, Beckwith J, Georgiou G. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci 96(24):13703-8. [9]Ritz D, Beckwith J. 2001. Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21-48. [10]Zhang Z, Gildersleeve J, Yang YY., Xu R, Loo JA., Uryu S, Wong CH., Schultz P.G. 2004. A new strategy for the synthesis of glycoproteins. Science 303(5656):371-3. [11]Hannig G, Makrides SC. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16(2):54-60. [12]Mitraki A, King J. 1989. Protein folding intermediates and inclusion body formation. Bio/technology 7:690-697. [13]Blackwell JR., Horgan R. 1991. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS 295:10-12. [14]Choi JH., Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64(5):625-35. [15]Dalbey RE., Heijne Gv., editors. 2002. Protein targetin, transport & translocation. [16]Berks BC., Sargent F, Palmer T. 2000. The Tat protein export pathway. Mol Microbiol 35(2):260-74. [17]Palmer T, Berks BC. 2003. Moving folded proteins across the bacterial cell membrane. Microbiology 149(Pt 3):547-56. [18]Muller M. 2005. Twin-arginine-specific protein export in Escherichia coli. Res Microbiol 156(2):131-6. [19]Fisher AC., DeLisa MP. 2004. A little help from my friends: quality control of presecretory proteins in bacteria. J Bacteriol 186(22):7467-73. [20]Berks BC., Palmer T, Sargent F. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8(2):174-81. [21]den Blaauwen T., Driessen AJM. 1996. Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165(1):1-8. [22]Driessen AJM, Fekkes P, van der Wolk JPW. 1998. The Sec system. Curr Opin Microbiol 1(2):216-22. [23]Sandkvist M. 2001. Biology of type II secretion. Mol Microbiol 40(2):271-83. [24]Dalbey RE., Chen M. 2004. Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta 1694(1-3):37-53. [25]Jeong KJ., Lee SY. 2000. Secretory production of human leptin in Escherichia coli. Biotechnol Bioeng 67(4):398-407. [26]Alami M, Trescher D, Wu LF., Muller M. 2002. Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli. J Biol Chem 277(23):20499-503. [27]DeLisa MP., Tullman D, Georgiou G. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci 100(10):6115-20. [28]Thomas JD., Daniel RA., Errington J, Robinson C. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39(1):47-53. [29]Santini CL., Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276(11):8159-64. [30]Robinson C, Bolhuis A. 2001. Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2(5):350-6 [31]Berks BC. 1996 . A common export pathway for proteins binding complex redox cofactors? Mol Microbiol. 22(3):393-404 [32]Settles AM., Yonetani A, Baron A, Bush DR., Cline K, Martienssen R. 1997. Sec-independent protein translocation by the maize Hcf106 protein. Science 278(5342):1467-70. [33]Stanley NR., Palmer T, Berks BC. 2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275(16):11591-6. [34]Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13(4):175-80. [35]Dalbey RE. 1991. Leader peptidase. Mol Microbiol 5(12):2855-60. [36]Berks BC., Palmer T, Sargent F. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187-254. [37]Cristobal S, de Gier JW., Nielsen H, von Heijne G.. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. Embo J 18(11):2982-90. [38]Wexler M, Bogsch EG., Klosgen RB., Palmer T, Robinson C, Berks BC. 1998. Targeting signals for a bacterial Sec-independent export system direct plant thylakoid import by the ΔpH pathway. FEBS Lett 431(3):339-42. [39]Dreusch A, Burgisser DM., Heizmann CW., Zumft WG. 1997. Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. Biochim Biophys Acta 1319(2-3):311-8. [40]Gross R, Simon J, Kroger A. 1999. The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from wolinella succinogenes. Arch Microbiol 172(4):227-32. [41]Halbig D, Wiegert T, Blaudeck N, Freudl R, Sprenger GA. 1999. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263(2):543-51. [42]Buchanan G, Sargent F, Berks BC., Palmer T. 2001. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Arch Microbiol 177(1):107-12. [43]Ignatova Z, Hornle C, Nurk A, Kasche V. 2002. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Commun 291(1):146-9. [44]Jack RL., Sargent F, Berks BC., Sawers G, Palmer T. 2001. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183(5):1801-4. [45]Wexler M, Sargent F, Jack RL., Stanley NR., Bogsch EG., Robinson C, Berks BC., Palmer T. 2000. TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275(22):16717-22. [46]Bogsch EG., Sargent F, Stanley NR., Berks BC., Robinson C, Palmer T. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273(29):18003-6. [47]Sargent F, Bogsch EG., Stanley NR., Wexler M, Robinson C, Berks BC., Palmer T. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo J 17(13):3640-50. [48]Lee PA., Buchanan G, Stanley NR., Berks BC., Palmer T. 2002. Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. J Bacteriol 184(21):5871-9. [49]Sargent F, Stanley NR., Berks BC., Palmer T. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274(51):36073-82. [50]De Leeuw E, Porcelli I, Sargent F, Palmer T, Berks BC. 2001. Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway. FEBS Lett. 506(2):143-8. [51]Allen SC., Barrett CM., Ray N, Robinson C. 2002. Essential cytoplasmic domains in the Escherichia coli TatC protein. J Biol Chem 277(12):10362-6. [52]Buchanan G, de Leeuw E, Stanley NR., Wexler M, Berks BC., Sargent F, Palmer T. 2002. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43(6):1457-70. [53]Sargent F, Gohlke U, de Leeuw E, Stanley NR., Palmer T, Saibil HR., Berks BC. 2001. Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268(12):3361-7. [54]Bolhuis A, Mathers JE., Thomas JD., Barrett CM., Robinson C. 2001. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276(23):20213-9. [55]Oates J, Mathers J, Mangels D, Kuhlbrandt W, Robinson C, Model K. 2003. Consensus structural features of purified bacterial TatABC complexes. J Mol Biol 330(2):277-86. [56]de Leeuw E, Granjon T, Porcelli I, Alami M, Carr SB., Muller M, Sargent F, Palmer T, Berks BC. 2002. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J Mol Biol 322(5):1135-46 [57]Alami M, Lüke I, Deitermann S, Eisner G, Koch HG., Brunner J, Müller M. 2003. Differential Interactions between a Twin-Arginine Signal Peptide and Its Translocase in Escherichia coli. Mol Cell. 12(4):937-46. [58]van den Berg B, Clemons Jr. WM., Collinson I, Modis Y, Hartmann E, Harrison SC., Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427(6969):36-44. [59]Dilks K, Rose RW., Hartmann E, Pohlschroder M. 2003. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol. 185(4):1478-83. [60]Yen MR., Tseng YH., Nguyen EH., Wu LF., Saier Jr. MH. 2002. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177(6):441-50. [61]Jongbloed JD., Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM. 2004. Two minimal Tat translocases in Bacillus. Mol Microbiol 54(5):1319-25. [62]Meissner D, Vollstedt A, van Dijl JM., Freudl R. 2007. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 76(3):633-42. [63]Yahr TL., Wickner WT. 2001. Functional reconstitution of bacterial Tat translocation in vitro. Embo J 20(10):2472-9. [64]Bronstein P, Marrichi M, DeLisa MP. 2004. Dissecting the twin-arginine translocation pathway using genome-wide analysis. Research in Microbiology 155(10):803-10. [65]Gouffi K, Gerard F, Santini CL., Wu LF. 2004. Dual topology of the Escherichia coli TatA protein. J Biol Chem 279(12):11608-15. [66]Palmer T, Sargent F, Berks BC. 2004. Light traffic: photo-crosslinking a novel transport system. Trends Biochem Sci 29(2):55-7. [67]Clark SA., Theg SM. 1997. A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol Biol Cell 8(5):923-34. [68]Rodrigue A, Chanal A, Beck K, Muller M, Wu LF. 1999. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274(19):13223-8. [69]Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF. 1998. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. Embo J 17(1):101-12. [70]Jack RL., Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004. Coordinating assembly and export of complex bacterial proteins. Embo J 23(20):3962-72. [71]Ilbert M, Mejean V, Giudici-Orticoni MT., Samama JP., Iobbi-Nivol C. 2003. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278(31):28787-92. [72]Turner RJ., Papish AL., Sargent F. 2004. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50(4):225-38. [73]Oresnik IJ., Ladner CL., Turner RJ. 2001. Identification of a twin-arginine leader-binding protein. Mol Microbiol 40(2):323-31. [74]Ilbert M, Mejean V, Iobbi-Nivol C. 2004. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150(Pt 4):935-43. [75]Genest O, Ilbert M, Mejean V, Iobbi-Nivol C. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280(16):15644-8. [76]Papish AL., Ladner CL., Turner RJ. 2003. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278(35):32501-6. [77]Bruser T, Sanders C. 2003. An alternative model of the twin arginine translocation system. Microbiol Res 158(1):7-17. [78]Angelini S, Moreno R, Gouffi K, Santini CL., Yamagishi A, Berenguer J, Wu LF. 2001. Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli. FEBS Lett 506(2):103-7. [79]Spence E, Sarcina M, Ray N, Moller SG., Mullineaux CW., Robinson C. 2003. Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol Microbiol 48(6):1481-9. [80]Faury D, Saidane S, Li H, Morosoli R. 2004. Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system. Biochim Biophys Acta 1699(1-2):155-62. [81]Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G. 2007. Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 282(11):8309-16. [82]Kisker C, Schindelin H, Rees DC. 1997. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem. 66:233-67. [83]McDevitt CA., Hugenholtz P, Hanson GR., McEwan AG. 2002. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol. 44(6):1575-87. [84]King PW., Przybyla AE. 1999. Response of hya expression to external pH in Escherichia coli. J Bacteriol. 181(17):5250-6. [85]Tarry M, Arends SJ., Roversi P, Piette E, Sargent F, Berks BC, Weiss DS, Lea SM. 2009. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol. 386(2):504-19. [86]Bernhardt T.G., de Boer P.A. 2003. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol. 48(5):1171-82. [87]Sturm A, Schierhorn A, Lindenstrauss U, Lilie H, Brüser T. 2006. YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J Biol Chem. 281(20):13972-8. [88]Feilmeier BJ., Iseminger G., Schroeder D., Webber H.,Phillips GJ. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol. 182(14): 4068-4076. [89]DeLisa MP., Samuelson P, Palmer T, Georgiou G. 2002. Genetic Analysis of the Twin Arginine Translocator Secretion Pathway in Bacteria. J Biol Chem 77(33):29825-31. [90]Karzai AW., Roche ED., Sauer RT. 2000. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7(6):449-55. [91]Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F. 2005. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci U S A 102(24):8460-5. [92]Li SY, Chang BY, Lin SC. 2006. Coexpression of TorD enhances the transport of GFP via the TAT pathway. J Biotechnol. 122(4):412-21. [93]Lee YF., Hsieh HY., Tullman-Ercek D, Chiang TK., Turner RJ., Lin SC. 2010. Enhanced translocation of recombinant proteins via the Tat pathway with chaperones in Escherichia coli. J. T. Chem. Eng., in press. (SCI) [94]Huang KC., Huang PH., Lin SC. 2009. A comparative study on the secretion of alkaline phosphatase in Escherichia coli. J. T. Chem. Eng., 40(1):29-35 [95]Cohen SN, Chang AC, Hsu L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 69(8):2110-4. [96]Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1 Spec No):33-8. [97]Winstone TL, Workentine ML, Sarfo KJ, Binding AJ, Haslam BD, Turner RJ. 2006. Physical nature of signal peptide binding to DmsD. Arch Biochem Biophys 455 (1):89-97.
基因重組蛋白大部分藉由已發展成熟且具高轉位效率的Sec輸送系統將蛋白質輸送到細胞周質,不過其系統僅能輸送未摺疊完成的蛋白。近年來國際間對雙精胺酸轉位系統(twin-arginine translocation, Tat)在大腸桿菌中之機制有極高的興趣,由於此系統可將具輔因子且摺疊完成的蛋白輸送至格蘭氏陰性菌如大腸桿菌的細胞周質,但其轉位速率不比Sec系統理想。過去我們的研究發現,共表現 TorD和 DmsD可提高蛋白轉位效率;此外TorD 與DmsD 分別對DmsA signal peptide 與TorA signal peptide 具有交叉活性。依據這些實驗結果,本實驗將針對大腸桿菌內28個具有Tat signal peptide 特性之胺基酸序列,探討共表現TorD 與DmsD 對綠色螢光蛋白轉位之影響。實驗結果顯示,共表現蛋白未必能提升綠色螢光蛋白的轉位效率,推測提升的程度會受訊息胜肽本身輸送蛋白的效率所影響。而訊息導引胜肽和共護蛋白之間的交互作用力則成為Tat系統轉位效率之決定性的重要機制。

The secretion of recombinant protein into the periplasm is generally accomplished via the well-studied Sec pathway, charactering of its high translocation efficiency. Nevertheless, it can only transport proteins in an unfolded state. On the contrary, a novel system, twin-arginine translocation (Tat) pathway, is been discovered recently. There are enormous interests have been attracted by the new pathway because it can secrete cofactor-containing proteins in folded state into the periplasm of Gram-negative bacteria such as Escherichia coli. However, the translocation efficiency of the Tat pathway is much lower than that via the Sec pathway. In our previous study, we have shown that the co-expression of chaperone TorD and DmsD can improve the translocation via the Tat pathway. Moreover, the enhancements are also present in the cross activity between TorD and DmsD. In light of these findings, I will elucidate the effect of TorD and DmsD co-expression on the translocation of GFP with 28 putative signal peptides. In this study, it shows that the chaperones do not absolutely enhance the efficiency; it may depend on the intrinsic translocation signal peptide itself. Furthermore, the interaction between signal peptides and chaperones would be the decisive issue in the mechanism of Tat pathway.
其他識別: U0005-0708201001554200
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.