Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHsu, Yu-Chunen_US
dc.identifier.citation1. M. A. Green, "Silicon solar cells: evolution, high-efficiency design and efficiency enhancements", Semiconductor Science and Technology, Vol. 8, pp. 1-12 (1993). 2. M. Grätzel, "Photoelectrochemical cells", Nature, Vol. 414, pp. 338-344 (2001). 3. B. O''Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, Vol. 353, pp. 737-740 (1991). 4. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes", Journal of the American Chemical Society, Vol. 115, pp. 6382-6390 (1993). 5. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, "Nanocrystalline titanium oxide electrodes for photovoltaic applications", Journal of the American Ceramic Society, Vol. 80, pp. 3157-3171 (1997). 6. A. Kay and M. Grätzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder", Solar Energy Materials and Solar Cells, Vol. 44, pp. 99-117 (1996). 7. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells", Journal of the American Chemical Society, Vol. 123, pp. 1613-1624 (2001). 8. M. Grätzel, "Dye-seneitized solar cells", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153 (2003). 9. 李玉華,「透明導電膜及其應用」,科儀新知,第12 卷,第94頁(1990)。 10. 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料,第179期,第134頁(2001)。 11. W. J.Company, "Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD", Thin Solid Films, Vol. 221, pp. 166-182 (1992). 12. R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, "Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique", Journal of Applied Physics, Vol. 83, pp. 2139-2214 (1998). 13. F. Zhu, C. H. A. Huan, K. Zhang and A. T. S. Wee, "Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy", Thin Solid Films, Vol. 359, pp. 244-250 (2000). 14. K. Zhang, F. Zhu, C. H. A. Huan and A. T. S. Wee, "Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films eeposited by radio frequency magnetron sputtering method", Journal of Applied Physics, Vol. 86, pp. 974-980 (1999). 15. L. J. Meng and M. P. dos Santos, "Properties of indium tin oxide(ITO) films prepared by r.f. reactive magnetron sputtering at different pressures", Thin Solid Films, Vol. 303, pp. 151-155 (1997). 16. H. Y. Yeom, N. Popovich, E. Chason and D. C. Paine, "A study of the effect of process oxygen on stress evolution in d.c. magnetron-deposited tin-doped indium oxide", Thin Solid Films, Vol. 411, pp. 17-22 (2002). 17. N. S. Murty and S. R. Jawalekar, "Characterization of antimony-doped tin oxide films for solar cell applications", Thin Solid Films, Vol. 108, pp. 277-283 (1983). 18. H. L. Ma, D. H. Zhang, S. Z. Win, S. Y. Li and Y. P. Chen, "Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD", Solar Energy Materials and Solar Cells, Vol. 40, pp. 371-380 (1996). 19. L. J. Meng, A. Maçarico and R. Martins, "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering", Vacuum, Vol. 46, pp. 673-680 (1995). 20. B. Thangaraju, "Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor", Thin Solid Film, Vol. 402, pp. 71-78 (2002). 21. K. Goto, T. Kawashima and N. Tanabe, "Heat-resisting TCO films for PV cells", Solar Energy Materials and Solar Cells, Vol. 90, pp. 3251-3260 (2006). 22. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki and S. Yoshikawa, "Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells", Solar Energy Materials and Solar Cells, Vol. 90, pp. 2129-2140 (2006). 23. H. Meier, "Sensitization of electrical effects in solids", Journal of Physical Chemistry, Vol. 69, pp. 719-729 (1965). 24. R. Memming and H. Tributsch, "Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes", Journal of Physical Chemistry, Vol. 75, pp. 562-570 (1971). 25. B. Y. Wei, H. M. Lin, C. C. Kao and A. K. Li, "Effect of calcination on photocatalytic activity of TiO2 nanopowders", Journal of Materials Science & Engineering, Vol. 35, pp. 64-69 (2003). 26. D. Cahen and G. Hodes, "Nature of photovoltaic action in dye-sensitized solar cells", Journal of Physical Chemistry B, Vol. 104, pp. 2053-2059 (2000). 27. 劉茂煌,「奈米光電池」,工業材料,第203期, 第91頁(2003)。 28. A. Hagfeldt and M. Gratzel, "Molecular photovoltaics", Accounts of Chemical Research, Vol. 33, pp. 269-277 (2000). 29. M. Quaas, C. Eggsl and H. Wulff, "Structural studies of ITO thin films the Rietveld method", Thin Solid Films, Vol. 332, pp. 277-281 (1998). 30. A. J. Steckl and G. Mohammed, "The effect of ambient atmosphere in the annealing of ITO films", Journal of Applied Physics, Vol. 51, pp. 3890-3895 (1980). 31. M. Quaas, H. Steffen, R. Hippler and H. Wulff, "The growth process of plasma-deposited ITO films investigated by grazing incidence X-ray techniques", Surface Science, Vol. 454-456, pp. 790-795 (2000). 32. C. C. F. John and J. B. Frank, "Properties of Sn-doped In2O3 films prepared by RF sputtering", Journal of the Electrochemical Society, Vol. 122, pp. 1719-1724 (1975). 33. P. Nath and R. F. Bunshah, "Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique", Thin solid Films, Vol. 69, pp. 63-68 (1980). 34. J. L. Vossen, "RF sputtered transparent conductors he systems In2O3-SnO2", RCA Review, Vol. 32, pp. 289-296 (1971). 35. F. Wu and B. S. Chiou, "Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing", Thin Solid Films, Vol. 247, pp. 201-207 (1994). 36. H. Kim and C. M. Gilmore, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices", Journal of Applied Physics, Vol. 86, pp. 6451-6461 (1999). 37. E. Burstein, "Anomalous optical absorption limit in InSb", Physical Review, Vol. 93, pp. 632-633 (1954). 38. T. S. Moss, "The interpretation of the properties of indium antimonide", Proceedings of the Physical Society Section B, Vol. 67, pp. 755-782 (1954). 39. D. Jiles, “Intruction to the electronic properties of materials”, London, Chapmanand & Hall, 1994. 40. M. D. Giulio, G. Micocci, R. Rella, P. Siciliano and A. Tepore, "Optical absorption and photoconductivity in amorphous indium selenide thin films", Thin Solid Films, Vol. 148, pp. 273-278 (1987). 41. 呂建璋,顏德鑫,吳永光,邱敬富,張慎周,林天財,「ITO與ITO/Cu透明導電膜之熱處理分析」,崑山科技大學電機工程學系,專題報告(2004)。 42. K. Kalyanasundaram and M. Grätzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices", Coordination Chemistry Reviews, Vol. 177, pp. 347-414 (1998). 43. B. K. Lee and J. J. Kim, "Enhanced efficiency of dye-sensitized solar cells by UV-O3 treatment of TiO2 layer", Current Applied Physics, Vol. 9, pp. 404-408 (2009). 44. S. Lee, J. H. Noh, S. J. Bae, I. S. Cho, J. Y. Kim, H. Shin, J. K. Lee, H. S. Jung and K. S.Hong, "Indium-tin-oxide-based transparent conducting layers for highly efficient photovoltaic devices", Journal of Physical Chemistry C, Vol. 113, pp. 7443-7447 (2009). 45. B. Yoo, K. Kim, S. H. Lee, W. M. Kim and N. G. Park, "ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells", Solar Energy Materials & Solar Cells, Vol. 92, pp. 873-877 (2008). 46. S. Ngamsinlapasathian, T. Sreethawong and S. Yoshikawa, "Enhanced efficiency of dye-sensitized solar cell using double-layered conducting glass", Thin Solid Film, Vol. 516, pp. 7802-7806 (2008). 47. T. Kawashima, H. Matsui and N. Tanabe, "New transparent conductive films: FTO coated ITO", Thin Solid Film, Vol. 445, pp. 241-244 (2003). 48. D. F. Rohlfing, T. Brezesinski, B. Smarsly and J. Rathouský, "Template-assisted preparation of films of transparent conductive indium tin oxide", Superlattices and Microstructures, Vol. 44, pp. 686-692 (2008). 49. J. Tousková, J. Kovanda, L. Dobiásová, V. Parízek and P. Kielar, "Sputtered indium-tin oxide substrates for CdS-CdTe solar cells", Solar Energy Materials and Solar Cells, Vol. 37, pp. 357-365 (1995). 50. S. C.Chang, "Low-pressure H2/N2 annealing on indium tin oxide film", Microelectronics Journal, Vol. 38, pp. 1220-1225 (2007). 51. M. K. Chong, K. Pita and S. T. H. Silalahi, "Correlation between diffraction patterns and surface morphology to the model of oxygen diffusion into ITO films", Materials Chemistry and Physics, Vol. 115, pp. 154-157 (2009). 52. H. Morikawa and M. Fujita, "Crystallization and decrease in resistivity on heat treatment of amorphous indium tin oxide thin films prepared by d.c. magnetron sputtering", Thin Solid Films, Vol. 339, pp. 309-313 (1999). 53. Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang, "Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering", Vacuum, Vol. 75, pp. 183-188 (2004). 54. 王剛、劉宏宇、趙超、楊柏梁、黃錫珉,「ITO退火膜的光學和電學特性」,吉林大學自然科學學報,第4期,第61-65頁(1999)。 55. J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf and F. Koch, "Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell", Solar Energy Materials & Solar Cells, Vol. 56, pp. 153-165 (1998). 56. L. Han, N. Koide, Y. Chiba and T. Mitate, "Modeling of an equivalent circuit for dye-sensitized solar cells", Applied Physics Letters, Vol. 84, pp. 2433-2435 (2004). 57. C. Longo and M. A. D. Paoli, "Dye-sensitized solar cells: a successful combination of materials", Journal of the Brazilian Chemical Society, Vol. 14, pp. 889-901 (2003). 58. T. Asano, T. Kubo and Y.Nishikitani, "Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, pp. 111-115 (2004). 59. R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, "Modeling and interpretation of electrical impedance spectra of dyesolar cells operated under open-circuit conditions", Electrochimica Acta, Vol. 47, pp. 4213-4225 (2002). 60. D. H. Zhang and H. L. Ma, "Scattering mechanisms of charge carriers in transparent conducting oxide films", Applied Physics A: Materials Science & Processing, Vol. 62, pp. 487-492 (1996).zh_TW
dc.description.abstract藉由對光電極進行二階段熱處理方式可以增進染料敏化太陽能電池(Dye-sensitized Solar Cell, DSSC)光電轉換效能。第一階段於氧氣中熱處理能夠有效地移除殘留於TiO2中的有機物質,促使染料順利地吸附在TiO2上,並提升電池的光電流密度。不過,此階段因為熱處理過程中氛圍中的氧原子填補ITO (Indium tin oxide, ITO)薄膜內的氧空缺,會使ITO導電薄膜片電阻從5.18 Ω/□大幅上升至32.2 Ω/□。第二階段熱處理於氮氣下目的是為了將第一階段於氧氣下熱處理時填補ITO薄膜結構中的氧原子帶走,使得ITO內的氧空缺數量增加,以降低ITO薄膜的片電阻並且提升染敏電池的填充效率。 我們對經過不同熱處理後的ITO導電薄膜進行光電性質、結構、表面型態、表面組成進行分析。ITO薄膜在含氧環境下熱處理其電阻會急遽上升,但在第二階段於氮氣中熱處理後電阻有下降的現象,因為電阻的高低與薄膜內的氧空缺數量有關。ITO薄膜於可見光範圍內的平均透光度在熱處理後仍然可以維持80%以上。經由熱處理後ITO薄膜結晶性會比熱處理前佳,因為非化學計量比(Non-stoichiometric compositions)的氧化物在熱處理中充分被氧化成化學計量比的氧化物,但於第二階段熱處理後的氧原子被帶走,故其結晶性又會變差。表面組成的分析中,結果顯示經過第一階段的熱處理後氧原子含量增加,而在第二階段熱處理後,氧原子含量有減少的趨勢。 由於光電流密度及填充效率的提升,轉換效率從傳統的一階段熱處理方式的5.53 %躍升至二階段式熱處理方式的6.7 %,光電流密度從14.08 mA/cm2上升至15.90 mA/cm2。zh_TW
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 (一) 前言 1 1. 能源危機與再生能源 1 2. 太陽能電池之發展 2 (二) 透明導電薄膜 5 (三) 研究動機與目的 6 第二章 文獻回顧 7 (一) 染料敏化太陽能電池簡介 7 (二) 染料敏化太陽能電池的結構及工作原理 8 (三) 染料與電解質 11 (四) 染料敏化太陽能電池之製程簡介 13 (五) 太陽能電池性能 14 (六) 銦錫氧化透明導電薄膜之特性 16 1. 簡介 16 2. 基本性質 17 3. 導電性質 19 4. 光學性質 19 (1) Burstein-Moss shift效應 20 (2) 光子吸收係數 22 (七) 熱處理原理 23 (八) 熱處理對染料敏化太陽能電池光電極的影響 26 1. 熱處理對TiO2的影響 26 (1) 有機物質殘留對TiO2的影響 26 2. 熱處理對ITO導電薄膜的導電性質之影響 27 (1) 退火氛圍對ITO導電薄膜的導電性質之影響 29 3. 熱處理對ITO導電薄膜的結構影響 30 4. 熱處理對ITO導電薄膜的光學性質影響 31 (九) 量測儀器 32 1. 四點探針 32 2. UV-vis光譜儀 36 3. 交流阻抗分析 36 第三章 實驗方法與設備 39 (一) 實驗儀器與設備 39 (二) 實驗流程 40 (三) 光電極退火實驗參數 41 (四) 染料敏化太陽能電池各部位元件之製備 43 1. 電極基材—銦錫氧化物(ITO) 43 2. 奈米多孔性TiO2薄膜之製備 43 3. 染料之製備與浸泡染料之過程 44 4. 對電極的製備(白金電極) 45 5. 液態電解液之製備 45 6. 熱封膜(Spacer) 46 (五) 組裝染料敏化太陽能電池 46 (六) ITO片電阻之測量 49 (七) 太陽電池元件光電測試 49 (八) 電化學交流阻抗圖譜分析 49 (九) SEM表面型態分析 49 (十) 紫外光-可見光光譜儀 49 (十一) X ray電子能譜儀分析 49 (十二) X光繞射儀 50 第四章 結果與討論 51 (一) ITO導電薄膜之導電性質 51 1. ITO導電薄膜於空氣下熱處理 51 2. ITO導電薄膜於空氣下熱處理後再以不同氣體氛圍下熱處理 53 3. ITO導電薄膜於氮氣下熱處理 57 4. ITO導電薄膜於空氣-氮氣下二階段熱處理 57 5. ITO導電薄膜經不同氛圍、溫度及時間下退火後之電阻變化 60 (二) ITO導電薄膜之表面組成 62 (三) ITO導電薄膜之結構性質 63 (四) ITO導電薄膜之表面型態 65 (五) ITO導電薄膜之光學性質 67 1. ITO導電薄膜經不同氛圍下退火後穿透率之變化 67 2. ITO導電薄膜經不同氛圍下退火後光吸收邊緣之變化 67 3. ITO導電薄膜經不同氛圍下退火後之光能隙之變化 71 (七) 電池效率 76 1. 有機物質殘留於TiO2中對染料敏化太陽能電池之效率表現 76 (1) 第一類與第三類退火比較 77 (2) 第二類與第四類退火比較 77 (3) 以FTO為基材經第一類與第三類退火比較 80 2. ITO基材片電阻對染料敏化太陽能電池之效率表現 81 (1)第一類與第二類退火比較及第三類與第四類退火比較 81 3. ITO導電薄膜之導電率對染料敏化太陽能電池填充效率之影響 82 (八) 電化學交流阻抗分析 83 第五章 結論 87 參考文獻 88zh_TW
dc.subjectdye sensitized solar cellsen_US
dc.subjectresidaul organicsen_US
dc.titleStudy of Enhanced Photovoltaic Performance of Dye Sensitized Solar Cells by Two-Step Annealing of Photoanodesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.