Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/38046
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jea, K.F. | en_US |
dc.contributor.author | 賈坤芳 | zh_TW |
dc.contributor.author | Chang, M.Y. | en_US |
dc.date | 2008 | zh_TW |
dc.date.accessioned | 2014-06-06T08:00:26Z | - |
dc.date.available | 2014-06-06T08:00:26Z | - |
dc.identifier.issn | 0169-023X | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/38046 | - |
dc.description.abstract | To speed up the task of association rule mining, a novel concept based on support approximation has been previously proposed for generating frequent itemsets. However, the mining technique utilized by this concept may incur unstable accuracy due to approximation error. To overcome this drawback, in this paper we combine a new clustering method with support approximation, and propose a mining method, namely CAC, to discover frequent itemsets based on the Principle of Inclusion and Exclusion. The clustering technique groups highly similar members to improve the accuracy of support approximation. The hit ratio analysis and experimental results presented in this paper verify that CAC improves accuracy. Without repeatedly scanning a database and storing vast information in memory, the CAC method is able mine frequent itemsets with relative stability. The advantages that the CAC method enjoys in both accuracy and performance make it an effective and useful technique for discovering frequent itemsets in a database. (c) 2007 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | zh_TW |
dc.relation | Data & Knowledge Engineering | en_US |
dc.relation.ispartofseries | Data & Knowledge Engineering, Volume 65, Issue 1, Page(s) 90-107. | en_US |
dc.relation.uri | http://dx.doi.org/10.1016/j.datak.2007.10.003 | en_US |
dc.subject | support approximation | en_US |
dc.subject | clustering | en_US |
dc.subject | data mining | en_US |
dc.subject | combinatorial | en_US |
dc.subject | approximation | en_US |
dc.subject | frequent itemset | en_US |
dc.subject | association rules | en_US |
dc.subject | efficient | en_US |
dc.subject | classification | en_US |
dc.subject | algorithm | en_US |
dc.title | Discovering frequent itemsets by support approximation and itemset clustering | en_US |
dc.type | Journal Article | zh_TW |
dc.identifier.doi | 10.1016/j.datak.2007.10.003 | zh_TW |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Journal Article | - |
item.fulltext | no fulltext | - |
Appears in Collections: | 資訊科學與工程學系所 |
TAIR Related Article
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.