Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorFu-Hsing Luen_US
dc.contributorChi-Wen Linen_US
dc.contributor.advisorShing-Yi Suenen_US
dc.contributor.authorTing, Hsueh-Fanen_US
dc.identifier.citation[1]A Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63 (2008) 515-582. [2] H. Tang, K. Prasad, R. Sanjinés, F. Lévy, TiO2 anatase thin films as gas sensors., Sensors & Actuators: B. Chemical 26-27 (1995) 71-75. [3]M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-344. [4]H. H. Huang, S. J. Pan, Y. L. Lai, T. H. Lee, C. C. Chen, F. H. Lu, Osteoblast-like cell initial adhesion onto a network-structured titanium oxide layer, Scripta Materialia, 51 (2004) 1017-1021. [5]Z. Ding, G. Q. Lu, and P. F. Greenfield, Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water, The Journal of Physical Chemistry B 104 (2000) 4815-4820 [6]Q. H. Zhang, L. Gao, J. K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Applied Catalysis B: Environmental 26 (2000) 207-215 [7]B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium(IV) Oxide Particles Suspended in Aqueous Solutions, The Journal of Physical Chemistry B 101 (1997) 3746-3752 [8]H. D. Jang, S. K. Kim, S. J. Kim, Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties, Journal of Nanoparticle Research 3 (2001) 141-147 [9]N. P. Xu, Z. F. Shi, Y. Q. Fan, J. H. Dong, J. Shi, Michael Z. C. Hu, Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions, Industrial & Engineering Chemistry Research 38 (1999) 373-379 [10]Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, Journal of Physical Chemistry B 102 (1998) 10871-10878 [11]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95 (1995) 735-758 [12]H. Jensen, A. Soloviev, Z. S. Li, E. G. Søgaard, XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Applied Surface Science 246 (2005) 239-249 [13]C. S. Turchi, D. F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis 122 (1990) 178-192 [14]G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials & Solar Cells 90 (2006) 2011-2075 [15]Y. Lin, Photocatalytic activity of TiO2 nanowire arrays, Materials Letters 62 (2008) 1246-1248 [16]J. G. Yu, X. J. Zhao and Q. N. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films 379 (2000) 7-14 [17]C. Anderson, A. J. Bard, An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis, Journal of Physical Chemistry 99 (1995) 9882-9885. [18]M. J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, A. Zecchina, Photoactive TiO2 films on cellulose fibres: synthesis and characterization, Journal of Photochemistry and Photobiology A: Chemistry 189 (2007) 286-294. [19]C. N. Kuo, H. F. Chen, J. N. Lin, B. Z. Wan, Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air, Catalysis Today 122 (2007) 270-276. [20]S. Schiller, G. Beister, W. Sieber, G. Schirmer, E. Hacker, influence of deposition parameters on the optical and structural properties of TiO2 films produced by reactive D.C. plasmatron sputtering , Thin Solid Films 83 (1981) 239-245. [21]S. Zhang, Y. F. Zhu, D. E. Brodie, Photoconducting TiO2 prepared by spray pyrolysis using TiCl4, Thin Solid Films 213 (1992) 265-270. [22]H. H. Huang , S. J. Pan, F. H. Lu, Surface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layer, Scripta Materialia 53 (2005) 1037-1042 [23]K. S. Yeung, Y. W. Lan, A simple chemical vapor deposition method for depositing thin TiO2 films, Thin Solid Films 109 (1983) 169-178. [24]J. M. Wu, S. Hayakawa, K. Tsuru, A. Osaka, Porous titania films prepared from interactions of titanium with hydrogen peroxide solution, Scripta Materialia 46 (2002) 101-106. [25]J. H. Yi, C. Bernard, F. Variola, S. F. Zalzal, J. D. Wuest, F. Rosei, A. Nanci, Characterization of a bioactive nanotextured surface created by controlled chemical oxidation of titanium, Surface Science 600 (2006) 4613-4621. [26]J. M. Wu, Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide, Journal of Crystal Growth 269 (2004) 347-355. [27]F. Variola, J. H. Yi, L. Richert, J. D. Wuest, F. Rosei, A. Nanci, Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation, Biomaterials 29 (2008) 1285-1298. [28]C. L. Chu, C. Y. Chung, P. K. Chu, Surface oxidation of NiTi shape memory alloy in a boiling aqueous solution containing hydrogen peroxide, Materials Science and Engineering A 417 (2006) 104-109. [29]S. Sakka, Handbook of sol-gel science and technology: processing characterization and applications, Kluwer Academic Publishers, Norwell, USA, (2004) 362-363. [30]D. S. Kim, S. J. Han, S. Y. Kwak, Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size, Journal of Colloid and Interface Science 316 (2007) 85-91. [31]P. S. Shinde, S. B. Sadale, P. S. Patil, P. N. Bhosale, A. Brüger, M. Neumann-Spallart, C. H. Bhosale, Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis, Solar Energy Materials & Solar Cells 92 (2008) 283-290. [32]T. Maekawa, K. Kurosaki, T. Tanaka, S. Yamanaka, Thermal conductivity of titanium dioxide films grown by metal-organic chemical vapor deposition, Surface & Coatings Technology 202 (2008) 3067-3071. [33]J. Randon, J. F. Guerrin, J. L. Rocca, Synthesis of titania monoliths for chromatographic separations, Journal of Chromatography A 1214 (2008) 183-186. [34]H. Haugen, J. Will, A. Köhler, U. Hopfner, J. Aigner, E. Wintermantel, Ceramic TiO2-foams: characterisation of a potential scaffold, Journal of the European Ceramic Society 24 (2004) 661-668. [35]J. Cao, O. Rusina, H. Sieber, Processing of porous TiO2-ceramics from biological performs, Ceramics International 30 (2004) 1971-1974. [36]M. J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, A. Zecchina, Photoactive TiO2 films on cellulose fibres: synthesis and characterization, Journal of Photochemistry and Photobiology A: Chemistry 189 (2007) 286-294. [37]W. A. Meulenberg , J. Mertens, M. Bram, H. P. Buchkremer, D. Stöver, Graded porous TiO2 membranes for microfiltration, Journal of the European Ceramic Society 26 (2006) 449-454 [38]S. Y. Zhou, Y. Q. Fan, Y. H. He, N. P. Xu, Preparation of titania microfiltration membranes supported on porous Ti-Al alloys, Journal of Membrane Science 325 (2008) 546-552 [39]X. W. Zhang, A. J. Du, P. F. Lee, D. D. Sun, J. O. Leckie, TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water, Journal of Membrane Science 313 (2008) 44-51 [40]K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemistry Reviews 77 (1998) 347-414. [41]T. Minabe, D. A. Tryk, P. Sawunyama, Y. Kikuchi, K. Hashimoto, Akira Fujishima, TiO2-mediated photodegradation of liquid and solid organic compounds, Journal of Photochemistry and Photobiology A: Chemistry 137 (2000) 53-62 [42]A. Andrzejewska, A. Krysztafkiewicz, T. Jesionowski, Adsorption of organic dyes on the aminosilane modified TiO2 surface, Dyes and Pigments 62 (2004) 121-130 [43]H. Y. Chen, , O. Zahraa, , M. Bouchy, , F. Thomas, J. Y. Bottero, Adsorption properties of TiO2 related to the photocatalytic degradation of organic contaminants in water, Journal of Photochemistry and Photobiology A: Chemistry 85 (1995) 179-186 [44]H. Zollinger, Colour Chemistry, VCH Publishers, New York, 1987, Chapter 16. [45]K. L. Hatch, H. I. Maibach, Textile dye dermatitis, Journal of the American Academy of Dermatology 32 (1995) 631-639 [46]T. Yahagi, M. Degawa, Y. Seino, T. Matsushima, M. Nagao, T. Sugimura, Y. Hashimoto, Mutagenicity of carcinogenic azo dyes and their derivatives, Cancer Letters 1 (1975) 91-96 [47]A. W. Neumann, R. J. Good, C. J. Hope, M. Sejpal, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles, Journal of Colloid and Interface Science 49 (1974) 291-304 [48]J. Drelich, J. D. Miller, Examination of Neumann's equation-of-state for interfacial tensions, Journal of Colloid and Interface Science 167 (1994) 217-220 [49]F. Armani, M. Gougis, S. A. Impey, A.C. James, K. Lawson, L. Lihrmann, M. Stock, S. Dunn, Nanostructured TiO2-morphological and structural changes, Materials Letters 64 (2010) 140-143. [50]J. M. Wu, M. Wang, Y. W. Li, F. D. Zhao, X. J. Ding, A. Osaka, Crystallization of amorphous titania gel by hot water aging and induction of in vitro apatite formation by crystallized titania, Surface & Coatings Technology 201 (2006) 755-761. [51]M. Wen, J. F. Gu, G. Liu, Z. B. Wang, J. Lu, Surface evolution of a gradient structured Ti in hydrogen peroxide solution, Applied Surface Science 254 (2008) 2905-2910. [52]Iler, Ralph K., Chemistry of Silica - Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, John Wiley & Sons, New York, USA, (1979) p.173. [53]P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelkam, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature 396 (1998) 152-155. [54]H. Wang, C. C. Oey, A. B. Djurišić, K. K. Y. Man, W. K. Chan, M. H. Xie, Y. H. Leung, P. C. Chui, A. Pandey, J. M. Nunzi, Titania porous network structure for solar cell application, Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, (2005). [55]H. Wang, C. C. Oey, A. B. Djurišić, M. H. Xie, Y. H. Leung, K. K. Y. Man, W. K. Chan, A. Pandey, J. M. Nunzi, P. C. Chui, Titania bicontinuous network structures for solar cell applications, Applied Physics Letters 87 (2005) 023507-1-023507-3 [56]X. F. Xie, L. Gao, Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations, Current Applied Physics 9 (2009) S185-S188. [57]X. T. Zhao, K. Sakka, N. Kihara, Y. Takata, M. Arita, M. Masuda, Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition, Current Applied Physics 6 (2006) 931-933 [58]B. W. Callen, B. F. Lowenberg, S. Lugowski, R. N. S. Sodhi, J. E. Davies, Nitric acid passivation of Ti6A14V reduces thickness of surface oxide layer and increases trace element release, Journal of Biomedical Materials Research 29 (1995) 279-290 [59]C. M. Chan, S. Trigwell, T. Duerig, Oxidation of an NiTi Alloy, Surface and Interface Analysis 15 (1990) 349-354 [60]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95 (1995) 735-758 [61]R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial and engineering chemistry 28 (1936) 988-994 [62]Q. Wu, B. Y. Zhao, C. Fang, K. A. Hu, An enhanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorheological materials, The European Physical Journal 17 (2005) 63-67 [63]M. S. Lim, K. Feng, X. Q. Chen, N. Q. Wu, A. Raman, J. Nightingale, E. S. Gawalt, D. Korakakis, L. A. Hornak, A. T. Timperman, Adsorption and desorption of stearic acid self-assembled monolayers on aluminum oxide, Langmuir 23 (2007) 2444-2452 [64]X. D. Wu, D. P. Wang, S. G. Yang, Preparation and characterization of stearate-capped titanium dioxide nanoparticles, Journal of Colloid and Interface Science 222 (2000) 37-40 [65]E. Johansson, L. Nyborg, XPS study of carboxylic acid layers on oxidized metals with reference to particulate materials, Surface and Interface Analysis 35 (2003) 375-381 [66]M. Gilbert, I. Sutherland, A. Guest, Characterization of coated particulate fillers, Journal of materials science 35 (2000) 391- 397 [67]M. D. Wei, Z. M. Qi, M. Ichihara, I. Honma, H. S. Zhou, Ultralong single-crystal TiO2-B nanowires: Synthesis and electrochemical measurements, Chemical Physics Letters 424 (2006) 316-320 [68]J. Fernández, J. Kiwi, J. Baeza, J. Freer, C. Lizama, H. D. Mansilla, Orange II photocatalysis on immobilised TiO2 Effect of the pH and H2O2, Applied Catalysis B: Environmental 48 (2004) 205-211 [69]C. G. Silva, W. D. Wang, J. L. Faria, Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation, Journal of Photochemistry and Photobiology A: Chemistry 181 (2006) 314-324 [70]A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental 31 (2001) 145-157zh_TW
dc.description.abstractIn this study, we use the chemical oxidation method to prepare the titania layer on titanium bulks. The oxidation time and temperature will be changed in the H2O2 solution to prepare porous network structure titania layer of different thickness and surface properties. An investigation of the formation mechanism of the network structure was also discussed. After oxidation, the SEM showed the maximum thickness of titania layer was about 3 μm. Porosity of titania layer was 50%; the XRD measurement showed that crystallographic structure of the titania layers were amorphous; and the XPS result showed that O/Ti ratio is increasing with oxidation time. After oxidation for 30, 60 and 90 min, the OS/OT ratio increase to 28%, 33% and 35% respectively. After modification with stearic acid, the contact angle of the titania layer was change from hydrophilic to hydrophobic, and XPS result showed the high reaction temperature enhanced reactivity of stearic acid to form the Ti-O-C ester-linkage. The ratios of OS/OL were decreasing with the amount of chemisorbed stearic acid due to the conversion of Ti-O-H to Ti-O-C. The adsorption and photodegradation of methylene blue and cibacron blue onto amorphous titania network was studied. The Optimum pH value was observed above 6.5 for methylene blue and below 2.5 for cibacron blue. The titania layer exhibited excellent adsorption capability for methylene blue that is much superior to commercial TiO2 (Degussa P-25) with a broad pH range. And it was observed that the photodegradation efficiency of methylene blue on titania layer was less than P-25 powder due to the amorphous phase. Furthermore, a rough surface provides more adsorption sites in the adsorption and photodegradation processes, the cracks may allow dye to diffuse into the titania layer easily. So we consider that diversity in adsorption capability and photodegradation efficiency was not only cause by the crystal phase, but also the different in zero point of charge, quantity of hydroxyl groups and the surface morphologyen_US
dc.description.tableofcontents摘要 i Abstract iii Content v List of tables vii List of figures viii Chapter 1. Introduction 1 Chapter 2. Experimental 3 2.1. Chemicals 3 2.2. Equipment and materials 3 2.3. Experimental procedures 4 2.4. Preparation of titania layer by chemical oxidation 4 2.5. Modification with stearic acid on titania layer 5 2.6. Adsorption and photodegradation of dyes 5 2.7. Analysis Method 6 2.7.1. Field-emission scanning electron microscope 6 2.7.2. X-ray diffraction spectrometer 6 2.7.3. X-ray photoelectron spectrometer 6 2.7.4. Surface roughness tester 7 2.7.5. Contact angle 7 2.7.6. Atomic force microscope 7 2.7.7. UV/Vis spectrometer 8 2.7.8. Fourier transform infrared spectrometer 8 Chapter 3. Results and Discussion 8 3.1. Characterization of titania layer prepared by chemical oxidation 8 3.1.1. Morphology 9 3.1.2. Thickness 10 3.1.3. Crystalline properties 10 3.1.4. Surface composition 11 3.1.5. Surface roughness 12 3.1.6. Surface wettability 13 3.2. Characterization of titania layer modified with stearic acid 13 3.2.1. Surface composition 13 3.2.2. Surface wettability 15 3.3. Dye adsorption on titania layer 15 3.4. Dye photodegradation on titania layer 17 3.5. Effect of surface roughness 18 Chapter 4. Conclusion 19 References 20zh_TW
dc.subjectamorphous titania networken_US
dc.subjectchemical oxidationen_US
dc.titlePreparation of amorphous titania network by chemical oxidation and its application for adsorptionen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.