Please use this identifier to cite or link to this item:
標題: 用雙酚A作為起始原料以合成高分子中間體
Synthesis of Polymer Intermediates Using Bisphenol A as the Starting Material
作者: 林信佑
Lin, Hsing-Yo
關鍵字: 雙酚A;bisphenol A;尿素法烷烯醚化;烷交換反應;非光氣法;碳陽離子;4-異丙烯基酚;異質雙官能基對苯二酚;urea-glycol alkoxylation;trans-alkylation;isopropylidene bis-phenylene;non-phosgene;carbocation;4-IPP dimers;4-isopropenyl phenol;dual-functional hydroquinones
出版社: 化學工程學系所
引用: 1 Dugan, Gordon F.; Widiger Jr. Alexander H. US Patent 3326986, 1967. 2 Iwahara, M.; Saruwatari, T. US Patent 7129382, 2006. 3 Blazejak, M. DE 3439938, 1986. 4 Kauth, H.; Kords, C.; Heuser, J. US Patent 7071284, 2006. 5 Fink, Johannes K. High Performance Polymers; William Andrew Inc.: New York, USA, 2008; pp 475-519. 6 Fink, Johannes K. High Performance Polymers; William Andrew Inc.: New York, USA, 2008; pp 237-281. 7 Johnson, Robert N.; Farnham, Alford G. US Patent 4175175, 1979. 8 Kumpf, Robrt J.; Wicks, Douglas A.; Nerger, Dittmar K.; Pielartzik, H.; Wehrmann, R. US Patent 5618889, 1997. 9 Fink, Johannes K. High Performance Polymers; William Andrew Inc.: New York, USA, 2008; pp 209-236. 10 Fortuin, J. P.; Waterman, H. I. Chemical Engineering Science 1953, 2, 182-192. 11 12 Schollenberger, C. S.; Scott, H.; Moore, G. R. Rubber World 1958, 137, 549-555. 13 Houser, Nathan E.; Kolaskie, Chad J. US Patent 6063892, 2000. 14 Krimm, H.; Botta, A.; Schnell, H. US Patent 3670024, 1972. 15 Krimm, H.; Ruppert, H.; Schnell, H. US Patent 3418371, 1972. 16 Sun, Kowk K. US Patent 4177211, 1979. 17 Caruso, Andrew J.; Lee, Julia L. J. Org. Chem. 1997, 62, 1058-1063. 18 Lin, H.-Y.; Dai, Shenghong A. J. Chin. Chem. Soc. 2010, 57 (2), 167-173. 19 Lin, C.-H.; Lin, H.-Y.; Liao, W.-Z.; Dai, Shenghong A. Green Chem. 2007, 9, 38-43. 20 Chen, W.-F.; Lin, H.-Y.; Dai, Shenghong A. Org. Lett. 2004, 6 (14), 2341-2343. 21 Randall, D.; Lee, S. The polyurethanes book; Wiley: New York, 2003. 22 Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes; Smithers Rapra Press: Shropshire, UK, 2005. 23 Hill, F. N.; Bailey Jr., F. E.; Fitzpatrick, J. T. Ind. Eng. Chem. 1958, 50, 5. 24 Saunders, J. H.; Frisch, K. C. Polyurethanes, Chemistry and Technology, Part I. Chemistry; Interscience: New York, 1962; pp 32-35. 25 Kroschwitz, Jacqueline I.; Howe-Grant, M. Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Wiley: New York, 1998; Vol. 19, pp 701-743. 26 Nobuyuki, S.; Masahide, T. JP 2000128979, 2000. 27 Grishchenko, N. F.; Pokorskii, V. N. Neftepererabotka i Neftekhimiya (Moscow, Russian Federation), 1966, 1, 33-35. 28 Yoshino, T.; Inaba, S.; Ishido, Y. Chem. Soc. Jpn. 1973, 46, 553. 29 Soos, L.; Deak, G. Y.; Keki, S.; Zsuga, M. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 545-550. 30 Liaw, D. J.; Chen, P. S. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 885-891. 31 Oku, A.; Tanaka, S.; Hata, S. Polymer 2000, 41, 6749-6753. 32 Dunn, Jesse T. US Patent 2773881, 1956. 33 McMullen, Charles H.; Nelson, James R.; Ream, Bernard C.; Sims Jr., Joseph A. US Patent 4314945, 1982. 34 Doya, M.; Ohkawa, T.; Kanbara, Y.; Okamoto, A.; Kimizuka, K. US Patent 5349077, 1994. 35 Doya, M.; Kanbara, Y.; Kimizuka, K.; Okawa, T. US Patent 5440004, 1995. 36 Bhanage, Bhalchandra M.; Fujita, S.; Ikushima, Y.; Arai, M. Green Chem. 2003, 5, 429-432. 37 Li, Q.; Zhang, W.; Zhao, N.; Wei, W.; Sun, Y. Catalysis Today 2006, 115, 111-116. 38 Roussos, M.; Lecomte, J. French Patent 1366067, 1964. 39 David, S.; Thieffry, A. J. Org. Chem. 1983, 48 (4), 441-447. 40 Anderson, Arthur W. US Patent 2927918, 1960. 41 Liaw, D.-J.; Shen, W.-C. Angew. Makromol. Chem. 1992, 199, 171-190. 42 Bosch, C.; Meiser, W. US Patent 1429483, 1922. 43 Kent, James A. Riegel's Handbook of Industrial Chemistry, 9th ed.; Van Nostrand Reinhold: New York, 1992; pp 1102-1106. 44 Trost, Barry M. Science 1991, 254, 1425-1556. 45 Lin, C.-H.; Lin, H.-Y. Liao, W.-Z.; Dai, Shenghong A. Chemistry (The Chinese Chemical Society, Taipei) 2007, 65 (4), 367-376. 46 Lin, C.-H. Ph. D. Dissertation, Department of Chemical Engineering, National Chung-Hsing University, 2008. 47 Gardette, J.-L.; Lemaire, J. Mokromol. Chem. 1982, 183 (10), 2415-2525. 48 Servay, T.; Voelkel, R.; Schmiedberger, H.; Lehmann, S. Polymer 2000, 41, 5247-5256. 49 Zajack, John G.; McCoy, John J.; Fuger, Karl E. US Patent 3895054, 1975. 50 Fukuoka, S.; Chono, M.; Watanabe, T.; Kohno, M. US Patent 4547322, 1985. 51 Katz, M. US Patent 2888438, 1959. 52 Ghatge, N. D.; Shinde, B. M.; Mulik, U. P. J. Polym. Sci., Polym. Chem. Ed. 1984, 22 (11), 3359-3365. 53 Hiegel, Gene A.; Hogenauer, Tyrone J. Synth. Commun. 2005, 35 (15), 2091-2098. 54 Beachell, H. C.; Chang, I. L. J. Polym. Sci., Part A-1: Polym. Chem. 1972, 10, 503-520. 55 Thames, S. F.; Malone, K. G. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 177-182. 56 Sugano, J.; Abe, M.; Takeuchi, T. JP 42023340, 1967. 57 Chung, Z.-H. Master Thesis, Department of Chemical Engineering, National Chung-Hsing University, 2006. 58 Wu, Z.-M. Master Thesis, Department of Chemical Engineering, National Chung-Hsing University, 2008. 59 Bosetti, A.; Cauchi, E.; Carletti, V.; Cesti, P. US Patent 6034265, 2000. 60 Harada, K.; Sugise, R.; Kashiwagi, K.; Matsuura, T. US Patent 6143917, 2000. 61 Ballistreri, Francesco P.; Fortuna, Cosimo G.; Musumarra, G.; Pavone, D.; Scire, S. ARKIVOC 2002, (xi), 54-64. 62 Dai, S. H.; Lin, C. Y.; Rao, D. V.; Stuber, F. A.; Carlecton, P. S.; Ulrich, H. J. Org. Chem. 1985, 50, 1722. 63 Krabbenhoft, H. O. US Patent 4346249, 1982. 64 Ito, H.; Willson, C. G.; Frechet, J. M. J.; Farrall, M. J.; Eichler, E. Macromolecules 1983, 16, 510. 65 Kato, N.; Morimoto, Y.; Ozawa, H. US Patent 4202805, 1980. 66 Crivello, J. V.; Lai, Y. L. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 653. 67 Crivello, J. V.; Ramdas, A. J. Macromol. Sci., Pure Appl. Chem. 1992, A29 (9), 753. 68 Yamazaki, N.; Morimoto, Y. GB 2031898, 1980. 69 Fujiwara, H.; Takahashi, A; Miyamoto, M. US Patent 4032513, 1977. 70 Schnell, H.; Krimm, H. Angew. Chem. Int. Ed. Engl. 1963, 2, 373-379. 71 Krimm, H.; Schnell, H. DE 1235894, 1967. 72 Mimaki, K.; Takese, T.; Iwasa, M.; Morimoto, T. US Patent 4054611, 1977. 73 Corson, B. B.; Heintzelman, W. J.; Schwartzman, L. H.; Tiefenthal, H. E.; Lokken, R. J.; Nickels, J. E.; Atwood, G. R.; Pavlik, F. J. J. Org. Chem. 1958, 23 (4), 544-549. 74 Dai, Shenghong A. US Patent 4720584, 1988. 75 Williamson, A. W. J. Chem. Soc. 1852, 4, 229. 76 Imai, Y.; Abe, S.; Ueda, M. J. Polym. Sci., Polym. Chem. Ed. 1981, 19, 3285-3291. 77 Lindley, J. Tetrahedron 1984, 40, 1433-1456. 78 Theil, F. Angew. Chem. Int. Ed. 1999, 38, 2345-2347. 79 Weingarten, H. J. Org. Chem. 1964, 29, 977-978. 80 Wang, J.; Shao, J.; Ren, G. Huaxue Shiji 1994, 16 (6), 371-372. 81 Johnson, G. W. GB 810069, 1959. 82 Wang, S.; Wang, J.; Liu, T.; Mo, Z.; Zhang, H.; Yang, D.; Wu, Z. Macromol. Chem. Phys. 1997, 198, 969-982. 83 Haddleton, David M.; Sahota, Hardeep S.; Taylor, Paul C.; Yeates, Stephen G. J. Chem. Soc., Perkin Trans. 1, 1996, 649-656. 84 Schuur, M.; Feijen, J.; Gaymans, Reinoud J. Polymer 2005, 46,4584-4595. 85 Washio, I.; Shibasaki, Y.; Ueda, M. Macromolecules 2005, 38, 2237-2246. 86 Kuo, M.-J.; Jeng, R.-J.; Su, W.-C.; Dai, Shenghong A. Macromolecules 2008, 41, 682-690. 87 Complete name of 23a is 4-methyl-2,4-bis(p-hydroxyphenyl)-pent-1-ene and 23b-c are 4-methyl-2,4-bis(p-hydroxyphenyl)-pent-2-enes (Webb, R. F.; Hinton, I. G. US Patent 3264358, 1966). 88 Complete name of 24 is 1-(4-hydroylphenyl)-1,3,3-trimethyl indan-6-ol (Farnham, A. G. US Patent 3288864, 1966). 89 Complete name of 25 is 6,6
In this research, we utilized bisphenol A (BPA), a low-cost commodity product, as the common starting material to develop new synthetic schemes for preparation of difunctional speciality intermediates for performance polymers, such as alkoxylated ether diols, isopropylidene bis-phenylene di-alkyl biscarbamates, 2,2-bis(4-isocyanatophenyl)propane, 2,2-bis(4-aminophenyl) propane, indane-ring bisphenols and dual functional hydroquinones. Some of them have been demonstrated in the synthesis of specialty polymers.

First of all, a one-pot epoxide-free alkoxylation process has been developed for phenolic compounds particularly for diols of BPA. The process involves heating phenolic compounds and urea in 1,2-glycols using Na2CO3/ZnO as co-catalysts. This process is particularly well-suited for making short chain-length alkoxyether alcohols of phenols. For instance, BPA was converted into their respective mono-alkoxylated ether alcohols on each of their phenolic groups in 80-95% isolated yields. In propoxylation of phenols, this approach shows great product selectivity favoring production of high secondary alcohols over primary alcohols in isomeric ratios of nearing 95/5. Since ammonia and carbon dioxide could be recycled back to urea for re-use, this alkoxylation can be regarded simply as a condensation reaction between phenols and 1,2-glycols giving off water as the only overall by-product. This one-pot process is simple, safe and environmentally friendlier than the conventional alkoxylated processes based on ethylene oxide (EO) or propylene oxide (PO).

Secondly, through the experiments on BPA's cleavage by an acid-catalyzed condition, it was found that 4-IPP carbocation can be readily generated by addition of BPA in concentrated sulfuric acid at ambient temperature so that it shows the facility and stability of the IPP carbocation in the acid-cleavage of BPA. For an extended utilization of the carbocation's mechanism, a trans-alkylation reaction has been developed for rapid synthesis of isopropylidene bis-phenylene biscarbamate 12 by adding mono-carbamates in the first step and followed by removal of the replaced phenol under reduced pressure. By this simple process, biscarbamate 12a with isopropylidene bis-phenylene structure can be prepared in about 80% yields. Furthermore, the biscarbamate was utilized as the precursor to prepare diisocyanate 13a and dianiline 14a by thermolysis and hydrolysis, respectively. In addition, these isopropylidene bis-phenylene intermediates could be served as the raw materials to carry out a non-phosgene route to prepare isocyanate or relative polymers. Moreover, it was found that the stable 4-IPP carbocation could be also used for facile synthesis of 4-IPP, 4-IPP dimers, or indane-ring bisphenol derivatives specifically by choosing acid media of different acid-strength.

Lastly, we have carried out a three-step synthetic approach of using 4-IPP as the raw material for preparation of dual functional hydroquinone intermediates in the following three sequential steps: (1) functionalization of the hydroxyl group of IPP first, (2) oxidation of isopropenyl group of IPP derivatives from the first step with hydrogen peroxide, and (3) functionalization of the new hydroxyl group with another derivative from step two. This general strategy is new and can make varieties of hydroquinone derivatives in precision for the first time. Due to the reactivity differences between two functional groups, the synthesized hydroquinone intermediates are particular attractive for the use in iterative or prepolymer synthesis

In summary, in this research, it was found that BPA could be utilized as an important raw material for synthesizing polymer intermediates especially those with isopropylidene bis-phenylene and hydroquinone skeletons which are not readily accessible by any known synthetic methodologies.
其他識別: U0005-1708201018033000
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.