Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3816
標題: 一甲基甲醯胺與二甲苯,環丁碸與二甲苯,甲苯與二甲苯,及苯與壬烷雙成分系統之恆溫汽液相平衡
Isothermal vapor-liquid quilibria of binary mixtures of N-methylformamide + xylene, sulfolane + xylene, toluene + xylene, benzene + nonane.
作者: 陳維冠
Chen, Wei-Kuan
關鍵字: Vapor-liquid equilibrium;苯;benzene;toluene;o-xylene;m-xylene;p-xylene;sulfonane;NMF;excess molar volume;甲苯;鄰間對二甲苯;環丁碸N-甲基甲醯胺;過剩吉布士自由能;過剩莫爾體積
出版社: 化學工程學系所
引用: 一、中文部分 [1] 台灣中國石油股份有限公司全球資訊網。 [2] 林河木,李明哲,「高溫汽-液相平衡量測與數據關聯」,化工技術,43,1996,頁33-42。 [3] 林河木,李明哲,「超臨界流體系統平衡溶解度之量測及關聯」,化工技術,67(10),1998,頁120-138。 [4] 林建中編輯,「高分子化學原理」,歐亞書局,1972,頁1-176。 [5] 陳延平,「汽液相平衡實驗與理論計算」,化工技術,43,1996,頁53-66。 [6] 陳文川,「乙醇-乙酸乙酯-水三成分系統於常壓下汽液液相平衡之研究」,1994,國立中央大學化學工程研究所碩士論文。 [7] 高素娟,黃學義,王斯厚,「環己烷蒸餾塔汽液平衡研究」,1996,國立中興大學化學工程研究所專題計畫。 [8] 李堃榮,「正己烷(1)+正庚烷(2)、苯(1)+甲苯(2)、苯(1)+N-甲基甲醯胺(2)、環己烷(1)+辛烷(2)、環己烷(1)+壬烷(2)、正庚烷(1)+辛烷(2)、甲苯(1)+間二甲苯(2)以及甲苯(1)+N-甲基甲醯胺(2) 雙成分汽液相平衡」,2009,國立中興大學化學工程研究所碩士論文。 [9] 柯清水,「石油化學概論」,正文書局,1980。 二、西文部分 [1] Richon, D., “New experimental developments for phase equilibrium measurements,” Fluid Phase Equilibria, Vol.116, pp.421-428 (1996) [2] Nagahama, K., “VLE Measurements at Elevated Pressures for Process Development,” Fluid Phase Equilibria, 116, 361-372 (1996). [3] Legret, D., Richon, D., and Renon, H., “Vapor-liquid equilibria up to 100 MPa: A new apparatus,” AIChE J., Vol.27, pp.203-207(1981). [4] Chen, C.C., Tang, M., and Chen, Y.P., “Vapor-liquid equilibria of binary and ternary mixtures of cyclohexane,3-methyl-2-butanone, and octane at 101.3 kPa,” J. Chem. Eng. Data, Vol.41, pp.557-561 (1996). [5] Paul, R.N., ”Study of liquid-vapor equilibrium in improved equilibrium still,” J. Chem. Eng. Data, Vol.21, pp.165-169 (1976). [6] Othmer, D., Silvis, F.S., Spiel, A., “Composition of vapors from boiling binary solutions: Pressure equilibrium still for studying water-acetic acid system,” Ind. Eng. Chem., Vol.44, pp.1864-1872(1952). [7] Huang, S.H., Lin, H.M., and Chao, K.C., “Experimental investigation of synthesis gas solubility in fischer-tropsch reactor slurry,” Fluid Phase Equilibria, Vol.36, pp.141-148 (1987). [8] Lin, H.M., Kim, H., Leet, W.A., and Chao, K.C., “New vapor-liquid equilibrium apparatus for elevated temperatures and pressures,” Ind. Eng. Chem. Fundam., Vol.24, pp.260-262 (1985). [9] Lin, H.M., and Lin, Y.R., “Flow apparatus of phase equilibrium measurement at elevated temperatures,” AIChE J., Vol.36, pp.1597-1600 (1990). [10] Jaubert, J., Borg, P., Coniglio, L., and Barth, D., “Phase Equilibria Measurements and Modeling of EPA and DHA Ethyl Esters in Supercritical Carbon Dioxide,” Journal of Supercritical Fluids., Vol.20, pp.145-155 (2001). [11] Chen, C. C., Chang, C. J., and Yang, P. W., “Vapor-liquid Equilibria of Carbon Dioxide with Linoleic Acid, α-tocopherol and Triolein at Elevated Pressures,” Fluid Phase Equilibria., Vol.175, pp.107-115 (2000). [12] Albert, H. J., and Wood, R. H., “High-Pressure Flow Densimeter for Fluids at Temperature to 700 K and Pressure to 40 MPa,” Rev. Sci. Instrum., Vol.55, pp.589-593 (1984). [13] Henry, J. A., Jeffrey, A. G., and Robert, H. W., “Densities of Toluene, Butanol and Their Binary Mixtures from 289 K to 400 K, and from 0.5 to 20.0 MPa,” Fluid Phase Equilibria, Vol.20, pp.321-330 (1985). [14] Panagiotopoulus, A. Z., and Reid, R. C. “High-Pressure Phase Equilibria in a Ternary Fluid Mixture with a Supercritical Component,” In Supercritical Fluids: Chemical and Engineering Principles and Applications; ACS Symposium Series 329; American Chemical Society: Washington, DC, pp.115-129 (1987). [15] Kato,M., Aizawa, K., Kanakira, T., and Ozawa, T., “A New Experimental Method of Vapor-Liquid Equilibria at High - Pressure,” J. Chem. Eng. Jpn., Vol.24, pp.767-771 (1991). [16] Lockemann, C. A., Munoz de Soto-soliz, S., and Schlunder, E.U., “High-pressure Phase Equilibria and Densities of the Binary System Carbon Dioxide/Methyl Laurate,” Chemical Engineering and Processing., Vol.34, pp.561-564 (1995). [17] Chang, C. J., “Volume Expansion Coefficients and Activity Coefficients of High-Pressure Carbon Dioxide Dissolution in Organic Liquids at 298 K,” J. Chem. Eng. Jpn., Vol. 25, pp.164-170 (1992). [18] Chang, C. J., Chiu, K. L., and Day, C. Y., “A New Apparatus for the Determination of P-x-y Diagrams and Henry’s constants in High Pressure Alcohols with Critical Carbon Dioxide,” Journal of Supercritical Fluids., Vol.12, pp.223-237 (1998). [19] Chang, C. J., Lee, M. S., Li, B. C., and Chen, P. Y., “Vapor-liquid Equilibria of CO2 with Four Unsaturated Fatty Acid Esters at Elevated Pressure,” Fluid Phase Equilibria., Vol.233, pp.56-65 (2005). [20] Willman, B. and Teja, A.S., “Vapor-liquid equilibria in toluene + m -xylene, toluene + n-decane, and n-decane + m-xylene mixtures, ” J. Chem. Eng. Data, Vol.30, pp.116-119 (1985). [21] Yu, Y.X., He, M.Y., Gao, G.H., and Li, Z.H., “Boiling points for five binary systems of sulfolane with aromatic hydrocarbons at 101.33 kPa,” Fluid Phase Equilibria., Vol.190, pp.61–71 (2001). [22] Yu, Y.X., and Li, Y.G., “Excess molar volumes of sulfolane in binary mixtures with six aromatic hydrocarbons at 298.15 K,” Fluid Phase Equilibria., Vol.147, pp.207–213 (1998). [23] Calvar, N., Gomez, E., Gonzalez, B., and Dominguez, A., “Experimental densities, refractive indices, and speeds of sound of 12 binary mixtures containing alkanes and aromatic compounds at T = 313.15 K,” J. Chem. Thermodyn., Vol.41, pp.939-944 (2009). [24] Peng, D.Y., and Robinson, D.B., “A new two-constant equation of state,” Ind. Eng. Chem. Fundam., Vol.15, pp.59-64 (1976). [25] Renon,H., and Prausnitz, J.M., “Local composition in thermodynamic excess functions for liquid mixture,” AIChE J., Vol.14, pp.135-144 (1968). [26] Abrams, D.S., and Prausnitz, J.M., “Statistical thermodynamic of liquid mixtures: A new expression for the excess Gibbs free energy of partly or completely miscible systems,” AIChE J, Vol.21, pp.116-128 (1975). [27] Wilson, G.M. “Vapor-Liquid Equilibrium XI, A New Expression for the Excess Free Energy of Mixing,” J. Am. Chem. Soc., Vol.86, pp.127-130 (1964). [28] Smith, J.M., and Van Ness, H.C., Introduction to chemical engineering thermodynamics, 4th Ed, McGraw-Hill, New York (1987). [29] Gibbs, J.W., The collected works of J. Willard Gibbs, Longmans, New York (1928). [30] Pitzer, K.S., “The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coerfficients,” J. Am. Chem. Soc., Vol.77, pp.3427 (1955). [31] Walas, S.M., Phase equilibria in chemical engineering, butterworth, Boston (1985). [32] Lee, B.I., and Kesler, M. G. “A generalized thermodynamic correlation based on three-parameter corresponding states,” AIChE J., Vol.21 pp.510 (1975). [33] Ursell, H.D., “The evaluation of Gibbs’ phase integral for imperfect gases,” Proc. Camb. Philos. Soc., Vol.23, pp.685 (1927). [34] Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., Vol.27, pp.1197-1203 (1972). [35] Patel, N.C., and Teja, A.S., “A new cubic equation of state for fluid and fluid mixtures,” Chem. Eng. Sci., Vol.37, pp.463-473 (1982). [36] Adachi, Y., and Sugie, H., “A new mixing rule – modified conventional mixing rule,” Fluid Phase Equilibria., Vol.28, pp.103 (1986). [37] Redlich, O., Kister, A.T., “Algebraic representation of thermodynamic properties and the classification of solution,” Ind. Eng. Chem., Vol.40, pp.345-348 (1948). [38] Gess, M.A., and Danner, R.P. Thermodynamic analysis of vapor-liquid equilibria: Recommended models and a standard data base, New York: AIChE (1991).. [39] Prausnitz, J.M., Lichtenthaler, R.N., and Azevedo, E.G., Molecular thermodynamics of fluid-phase equilibria, 2nd ed., Prentice-Hall Englewood Cliffs, N.J. (1986). [40] Van Ness, H.C., and Abbott, M.M., Classical thermodynamics of nonelectrolyte solutions: With applications to phase equilibria, sec 5-7., McGraw-Hill, New York (1982). [41] Orye, R.V., Prausnitz, J.M., “Multicomponent equilibria with the Wilson equation,” Ind. Eng. Chem., Vol.57, pp.18-26 (1965). [42] Ambrose, D., “Correlation and estimation of vapor-liquid critical properties. Ι. Critical temperatures of organic compounds,” National Physical Laboratory, Tedding, NPL Rep. Chem. (1980). [43] Joback, K.G., and Reid, R.C., “Estimation of pure compound properties from group-contributions,” Chem. Eng. Commun., Vol.5, pp.233-243 (1987). [44] J.D. Raal, A. L. Muhlbauer, Phase Equilibria: Measurement and Computation, Taylor & Francis, Washington, DC, 1998 [45] Karvo, M., “Thermodynamic properties of binary and ternary mixtures containing sulfolane.VI. “Vapour - liquid equilibria for (benzene +sulfolane) and (toluene + sulfolane),” J. Chem. Thermodyn., Vol.12, pp.1175-1181 (1980). [46] Domanska, U., Sporzynski, A., Moollan, W.C., and Letcher, J., “Vapor-Liquid Equilibria of Binary Mixtures Containing Sulfolane,” J. Chem. Eng. Data, Vol.41, pp.624-628 (1996). [47] Jang, S., Shin, M.S., Lee, Y., and Kim, H., “Measurement and Correlation of (Vapor + Liquid) Equilibria for the {2-Propoxyethanol(C3E1) + n-Hexane} and the {2-Propoxyethanol(C3E1) + n-Heptane} Systems,” J. Chem. Thermodynamics., Vol.41, pp. 51-55 (2009). [48] Ashcroft, S. J., Clayton, A. D., and Shearn, R. B., “Isothermal Vapor-liquid Equilibria for the Systems Toluene-n-Heptane, Toluene-Propan-2-ol, Toluene-Sulfolane, and Propan-2-ol-Sulfolane,” J. Chem. Eng. Data., Vol.24, pp.195-199 (1979). [49] Harris, R. A., Wittig, R., Gmehling, J., Letcher, T. M., Ramjugernath, D., and Raal, J. D., “Vapor-liquid Equilibria for Four Binary Systems at 363.15 K: N-Methylformamide + Hexane, + Benzene, + Chlorobenzene, and +Acetonitrile,” J. Chem. Eng. Data., Vol.48, pp.341-343 (2003). [50] Gupta, S., K. and Rawat, B. S., “Isobaric Vapor-Liquid Equilibria for Ternary Mixtures: Saturated Hydrocarbons, Xylenes, and Ethylbenzene with Sulfolane at 101.325 kPa,” J. Chem. Eng. Data., Vol.43, pp.396-399 (1998). [51] Lee, k. J., and Chen, W.K., “Isothermal vapor-liquid equilibria for binary mixtures of benzene, toluene, m-xylene, and N-methylformamide at 333.15K and 353.15K,”Fluid Phase Equilibria., Vol.280, pp.42–48 (2009). [52] Lin, W. C. and Kao, N. H. “Liquid-liquid Equilibria of Octane + (Benzene or Toluene or m-Xylene) + Sulfolane at 323.15, 348.15, and 373.15 K,” J. Chem. Eng. Data., Vol.47, pp.1007-1011 (2002). [53] SIM4ME, PRO-II with PROVISION simulation program-twenty LAN concurrent users, version 8.0, Invensys Process Systems, Inc., Lake Forest, CA 92630, 2006, http://www.simsci-esscor.com.
摘要: 
本研究量測333.15 K、343.15 K、及353.15 K的雙成分混合物的汽液相平衡。七組系統為苯(1)+壬烷(2)、甲苯(1)+鄰二甲苯(2)、間二甲苯(1)+環丁碸(2)、鄰二甲苯(1)+環丁碸(2)、鄰二甲苯(1)+N-甲基甲醯胺(2)、間二甲苯(1)+N-甲基甲醯胺(2)、及對二甲苯(1)+N-甲基甲醯胺(2)。量測壓力範圍從0.01到101.3 kPa之間。分別以Wilson、NRTL、UNIQUAC三種活性係數模式,進行壓力與液相莫爾分率的實驗值間彼此,相關性之研究。以泡點壓力方法來計算汽相莫爾分率,並以Peng-Robinson狀態方程式關聯汽相數據。同時,量測汽相與液相的密度,得汽液相的過剩莫爾體積值。實驗結果發現甲苯(1)+鄰二甲苯(2)、鄰二甲苯(1)+N-甲基甲醯胺(2)、間二甲苯(1)+N-甲基甲醯胺(2)、及對二甲苯(1)+N-甲基甲醯胺(2)的四組混合物,呈現近似理想溶液。苯(1)+壬烷(2)、間二甲苯(1)+環丁碸(2)以及鄰二甲苯(1)+環丁碸(2)三組混合物,呈現偏離理想溶液。過剩吉布士自由能的計算值顯示,僅有甲苯(1)+鄰二甲苯(2)雙成分系統呈現負值,其餘六組雙成分系統的自由能皆為正值。

Vapor-liquid equilibria at 333.15 K 343.15K and 353.15 K for seven binary mixtures of benzene + nonane, toluene + o-xylene, m-xylene + sulfolane, o-xylene + sulfolane, o-xylene + NMF, m-xylene + NMF and p-xylene + NMF have been obtained at pressures ranged from 0.01 to 101.3 kPa. The Wilson, NRTL and UNIQUAC activity coefficient models have been employed to correlate experimental data to find intermolecular parameters. The non-ideal behavior of the vapor phase has been considered by using the Peng-Robinson equation of state in calculating the vapor mole fraction. Liquid and vapor densities were measured by using two vibrating tube densitometers to determine liquid excess molar volumes. Six systems of benzene + nonane , m-xylene + sulfolane , o-xylene + sulfolane , o-xylene + NMF, m-xylene + NMF and p-xylene + NMF mixtures present large positive deviations from the ideal solution and belong to endothermic mixings because their excess Gibbs energies are positive. Temperature dependent intermolecular parameters in the three models were obtained in this study.
URI: http://hdl.handle.net/11455/3816
其他識別: U0005-1808201011292500
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.