Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3822
標題: 以銅為基礎擔持於氧化鐠之觸媒用於甲醇蒸氣重組產氫之研究
Production of Hydrogen by Steam Reforming of Methanol over Copper-Based Catalysts Supportedon Praseodymium Oxide
作者: 詹旻珂
Chan, Min-Ke
關鍵字: steam reforming of methanol;蒸汽重組反應;copper catalysts;praseodymium oxide;chemical reduction method;氧化鐠;銅觸媒;化學還原法
出版社: 化學工程學系所
引用: 1. 林伸茂, 直接甲醇燃料電池原理、應用與實做. 2006. 2. 黃江鎮, 綠色能源. 2008. 3. Fernández, P.S., Electrochemical behaviour of single walled carbon nanotubes – Hydrogen storage and hydrogen evolution reaction. International Journal of Hydrogen Energy, 2009. 34(19): p. 8155-8126. 4. Garwin., P.B.a.L., Science at the atomic scale. Nature, 1992. 355: p. 761-766. 5. 高濂、李蔚, 奈米陶瓷. 2003. 6. Summers, J.C. and S.A. Ausen, Catalyst impregnation: Reactions of noble metal complexes with alumina. Journal of Catalysis, 1978. 52(3): p. 445-452. 7. A.Schwarz, R.Z.a.T., Design of inhomogeneous metal distributions within catalyst particles. Appl.Catal., 1992.(91): p. 57-65. 8. 曹茂盛, 奈米材料導論. 2002. 9. H. Li, J.W., Study on CO2 reforming of methane to syngas over Al2O3-ZrO2 supported Ni catalysts prepared via a direct sol-gel process. Chemical Engineer Science, 2004. 59: p. 4861-4867. 10. Gonzalez, R.D., T. Lopez, and R. Gomez, Sol--Gel preparation of supported metal catalysts. Catalysis Today, 1997. 35(3): p. 293-317. 11. Faraday, M., Philo. Trans. R. Soc. London. 1857. 145(147). 12. Venezia, A.M., A. Rossi, D. Duca, A. Martorana, and G. Deganello, Particle size and metal-support interaction effects in pumice supported palladium catalysts. Applied Catalysis A: General, 1995. 125(1): p. 113-128. 13. Gil, A., A. Díaz, L.M. Gandía, and M. Montes, Influence of the preparation method and the nature of the support on the stability of nickel catalysts. Applied Catalysis A: General, 1994. 109(2): p. 167-179. 14. 王鳳英, 界面活性劑的原理與應用. 高立圖書有限公司, 1996. 15. Matter, P.H., D.J. Braden, and U.S. Ozkan, Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts. Journal of Catalysis, 2004. 223(2): p. 340-351. 16. Chan, S.H. and H.M. Wang, Thermodynamic and Kinetic Modeling of an Autotheral Methanol Reformer. J. Power Sources, 2004. 126: p. 8. 17. Kulprathipanja, A. and J.L. Falconer, Partial oxidation of methanol for hydrogen production using ITO/Al2O3 nanoparticle catalysts. Applied Catalysis A: General, 2004. 261(1): p. 77-86. 18. Huang, T.J., Wang, S.W., Hydrogen production via partial oxidation of methanol over copper-zinc catalysts. Appl.Catal., 1986. 24(287). 19. Takezawa, N. and N. Iwasa, Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today, 1997. 36(1): p. 45-56. 20. Shen, G.-C., S.-i. Fujita, S. Matsumoto, and N. Takezawa, Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity. Journal of Molecular Catalysis A: Chemical, 1997. 124(2-3): p. 123-136. 21. Shen, J.-P. and C. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells. Catalysis Today, 2002. 77(1-2): p. 89-98. 22. Shishido, T., M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, and K. Takehira, Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Applied Catalysis A: General, 2006. 303(1): p. 62-71. 23. Shishido, T., Y. Yamamoto, H. Morioka, and K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A: Chemical, 2007. 268(1-2): p. 185-194. 24. Kawabata, T., H. Matsuoka, T. Shishido, D. Li, Y. Tian, T. Sano, and K. Takehira, Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation. Applied Catalysis A: General, 2006. 308: p. 82-90. 25. Jeong, H., K.I. Kim, T.H. Kim, C.H. Ko, H.C. Park, and I.K. Song, Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst. Journal of Power Sources, 2006. 159(2): p. 1296-1299. 26. Oguchi, H., T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, and S. Imamura, Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Applied Catalysis A: General, 2005. 281(1-2): p. 69-73. 27. Oguchi, H., H. Kanai, K. Utani, Y. Matsumura, and S. Imamura, Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Applied Catalysis A: General, 2005. 293: p. 64-70. 28. Papavasiliou, J., G. Avgouropoulos, and T. Ioannides, Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming. Applied Catalysis B: Environmental, 2007. 69(3-4): p. 226-234. 29. Pérez-Hernández, R., G. Mondragón Galicia, D. Mendoza Anaya, J. Palacios, C. Angeles-Chavez, and J. Arenas-Alatorre, Synthesis and characterization of bimetallic Cu-Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy, 2008. 33(17): p. 4569-4576. 30. Yang, H.-M. and P.-H. Liao, Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol. Applied Catalysis A: General, 2007. 317(2): p. 226-233. 31. P.H. Liao, H.M.Y., Preparation of catalyst Ni-Cu/CNTs by chemical reduction with formaldehyde for steam reforming of methanol. Catalysis letter, 2008. 121: p. 274-282. 32. Usami, Y., K. Kagawa, M. Kawazoe, M. Yasuyuki, H. Sakurai, and M. Haruta, Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides. Applied Catalysis A: General, 1998. 171(1): p. 123-130. 33. Suwa, Y., S.-i. Ito, S. Kameoka, K. Tomishige, and K. Kunimori, Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Applied Catalysis A: General, 2004. 267(1-2): p. 9-16. 34. Liu, S., K. Takahashi, K. Uematsu, and M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO. Applied Catalysis A: General, 2005. 283(1-2): p. 125-135. 35. Liu, S., K. Takahashi, K. Uematsu, and M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component. Applied Catalysis A: General, 2004. 277(1-2): p. 265-270. 36. Liu, S., K. Takahashi, K. Fuchigami, and K. Uematsu, Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation. Applied Catalysis A: General, 2006. 299: p. 58-65. 37. Liu, S., K. Takahashi, H. Eguchi, and K. Uematsu, Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials. Catalysis Today, 2007. 129(3-4): p. 287-292. 38. Liu, S., K. Takahashi, and M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading. Catalysis Today, 2003. 87(1-4): p. 247-253. 39. 王立仁, 自磁種凝絮污泥回收再利用奈米磁性顆粒─以化學機械研磨廢水為例. 2005. 40. Nikoobakht, B.a.E.-S., M. A.,, Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir, 2001. 17: p. 6368. 41. Arena, F., K. Barbera, G. Italiano, G. Bonura, L. Spadaro, and F. Frusteri, Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 2007. 249(2): p. 185-194.
摘要: 
本論文研究目的為將活性金屬銅與促進劑擔持於氧化鐠載體表面,將其應用於甲醇蒸氣重組反應。觸媒製備變數包含不同製備方法、不同促進劑、促進劑不同含量、不同製備溶液、不同分散劑、不同前驅物濃度、不同第二載體之添加,觸媒活性則以固定床反應器在水對甲醇莫耳比為1.3下於溫度200

In this dissertation, the purpose of this study is to prepare copper based catalyst supported on praseodymium oxide and to apply it on steam reforming of methanol. The catalysts were tested by packed-bed reactor between 200℃ to 400℃. The parameters of catalyst preparation include the different deposition methods, ratios of promoter to support, different solutions, types of stabilizer, concentration of precursor and different second supports. Operating conditions in steam reforming of methanol included molar ratio of H2O/CH3OH, molar ratio of O2/CH3OH, weight hourly space velocity, and stability of catalysts.
The results revealed that the catalyst prepared by precipitation and chemical reduction method is better than that prepared by co-precipitation method for this system. Doping of 10% small amounts of metal oxide promoters (Ce, Sm, Y, Zr) to the Cu-Pr2O3 catalyst enhanced the dispersion , activity of the catalyst and improved about 5% yield at 280°C. The catalyst added CeO2 has the best hydrogen yield of 91%. Y2O3-doped catalyst has the smallest volume fraction of carbon monoxide , 0.09V%. With the addition content of Y2O3 more than 16%, promoters would be too much and hide copper to decrease the activity of catalyst. Different catalyst stabilizers also affect the structure of catalyst significantly in the process of preparation of catalyst. CTMAB surfactant adsorbed on the catalyst surface will make the copper not reduced and inhibit the activity of copper. While the polyethylene glycol (PEG) change the structure and enhance the active catalysts effectively. Adding the alumina in the catalyst can improve the catalytic efficiency. In the stability test, the activity of Cu(25)/Pr2O3(75) catalyst remain 60% in the reaction of 20 hours, and the Cu(25)Y2O3(10)/Pr2O3(65) catalyst maintained at 80%. While the hydrogen yield of the catalyst added alumina almost had no decline in the reaction of 100 hours.
URI: http://hdl.handle.net/11455/3822
其他識別: U0005-1907201015171000
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.