Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3823
DC FieldValueLanguage
dc.contributor萬其超zh_TW
dc.contributorChi-Chao Wanen_US
dc.contributor林智汶zh_TW
dc.contributor林靖淵zh_TW
dc.contributorChi-Wen Linen_US
dc.contributorJin-Yuan Linen_US
dc.contributor.advisor竇維平zh_TW
dc.contributor.advisorWei-Ping Dowen_US
dc.contributor.author盧俊瑋zh_TW
dc.contributor.authorLu, Chun-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T05:32:51Z-
dc.date.available2014-06-06T05:32:51Z-
dc.identifierU0005-1907201018302300zh_TW
dc.identifier.citation1. H. Xiao, Introduction of Semiconductor Manufacturing Technology, Prentice-Hall Inc., New Jersey, 2001. 2. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM J. Res. & Dev., 42, 567-574, 1998. 3. 竇維平,黃河樹,蘇勇誌,與顏銘瑤,「電鍍銅添加劑在 IC 及 IC 構裝基板上的應用」,化工,第50卷第4期,14-29,2003。 4. M. R. Kalantary, D. R. Gabe, and M. R. Goodenough, “Unipolar and Bipolar Pulsed Current Electrodeposition for PCB Production,” J. Appl. Electrochem., 23, 231-240, 1993. 5. 胡啟章,電化學原理與方法,五南出版,2002。 6. A. J. Bard, and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John-Woely & Sons Inc., New York, USA, 2001. 7. M. Georgiadou, D. Veyret, R. L. Sani, and R. C. Alkire, “Simulation of Shape Evolution during Electrodeposition of Copper in the Presence of Additive”, J. Electrochem. Soc., 148, C54-C58, 2001. 8. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 142, L87-L89, 1995. 9. D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, “Copper Ion Reduction Catalyzed by Chloride Ions,” J. Electroanal. Chem., 532, 353-358, 2002. 10. G. M. Brown, and G. A. Hope, “A SERS Study of SO42- / Cl- ion adsorption at a Copper Electrode In-Situ,” J. Electroanal. Chem., 405, 211-216, 1996. 11. W. P. Dow, and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method,” J. Electrochem. Soc., 153, C190-C194, 2006. 12. W. P. Dow, M. Y. Yen, C. W. Liu, and C. C. Huang, “Enhancement of filling performance of a copper plating formula at low chloride concentration,” Electrochimica Acta, 53, 3610-3619, 2008. 13. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene Glycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku., 52, 218, 1984. 14. J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol I Quartz Crystal Microbalance Study”, J. Electrochem. Soc., 145, 3472-3476, 1998. 15. Z. V. Feng, X. Li, and A. A. Gewirth, “Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study”, J. Phys. Chem. B, 107, 9415-9423, 2003. 16. B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, T. L. Xiang, and G. N. Chen, “In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode”, J. Electrochem. Soc., 154, D516-D519, 2007. 17. W. P. Dow, M. Y. Yen, W. B., Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia by Copper Electroplating”, J. Electrochem. Soc., 152, C769-C775, 2005. 18. C. C. Hung, Y. L. Wang, W. H. Lee, and S. C. Chang, “Competitive Adsorption Between Bis(3-sodiumsulfopropyl disulfide) and Polyalkylene Glycols on Copper Electroplating”, J. Electrochem. Soc., 155, H669-H672, 2008. 19. J. Mendez, R. Akolkar, and U. Landau, “Polyether Suppressors Enabling Copper Metallization of High Aspect Ratio Interconnects”, J. Electrochem. Soc., 156, D474-D479, 2009. 20. N. Zukauskaite, and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrode in Situ,” Sov. Electrochem., 24, 1564, 1989. 21. J. P. Healy, and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartII. The Instability of 4, 5- Dithiaoctane-1, 8-Disulphonic Acid in the Bath on Open Circuit,” J. Electroanaly. Chem., 338, 167, 1992. 22. E. Mattsson, and J. O. M. Bockris, “Galvanostatic Studies of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System,” Trans. Faraday Soc., 55, 1586, 1959. 23. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride ion in Microvia Filling by Copper Electrodeposition - II. Studies Using EPR and Galvanostatic Measurements,” J. Electrochem. Soc., 152, C77-C88, 2005. 24. G. K. Gomma, “Effect of Azole Compounds on Corrosion of Copper in Acid Medium,” Materials Chemistry and Physics., 56, C27, 1998. 25. W. P. Dow, H. S. Huang, M. Y. Yen, and H. C. Huang, “Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating,” J. Electrochem. Soc., 152, C425-C434, 2005. 26. K. Kondo, Y. Suzuki, T. Saito, “Shape Evolution of Electrodeposited Bumps with Shallow and Deep Cavities,” J. Electrochem. Soc., 156, D548-D552, 2009. 27. T. Oritani, N. Fukuhara, T. Okajima, F. Kitamura, and T. Ohsaka, “Electrochemical and Spectroscopic Studies on Electron-Transfer Reaction Between Novel Water-Soluble Tetrazolium Salts and a Superoxide Ion,” Inorganica Chimica Acta, 357, 436-442, 2004. 28. K. Umemoto, “Electrochemical Studies of the Reduction Mechanism of Tetrazolium Salts and Formazans,” Bull Chem. Soc. Jpn., 62, 3783-3789, 1989. 29. B. H. J. Bielski, G. G. Shiue, and S. Bajuk, “Reduction of Nitro Blue Tetrazolium by CO2- and O2- Radicals,” J. Phys. Chem., 84, 830-833, 1980. 30. K. Umemoto, Y. Nagase, and Y. Sasaki, “Reaction of Hydroxide Ion with Electron Donors in Aprotic solvents,” Bull Chem. Soc. Jpn., 67, 3245-3248, 1994. 31. K. Umemoto, and N. Okamura, “Reaction of Hydroxide Ion with Electron Acceptors in Dimethyl Sulfoxide,” Bull Chem. Soc. Jpn., 59, 3047-3052, 1986. 32. 汪建民,材料分析,中國材料科學學會,2001。 33. 羅吉宗,薄膜科技與應用,全華圖書,2005。 34. R. E. Lee, Scanning Electron Microscopy and X-Ray Microanalysis, Prentice-Hall: Englewood Cliffs, NJ, 1993. 35. 柯以侃,儀器分析,新文京開發出版,2005。 36. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, and D. Josell, “Superconformal Electrodeposition of Copper in 500-90nm Features,” J. Electrochem. Soc., 147, 4524-4535, 2000. 37. J. J. Kelly, and A. C. West, “Leveling of 200nm Featires by Organic Additives,” Electrochem. Solid-State Lett., 2, 561-563, 1999. 38. K. Takeshi, K. Junichi, and M. Kuniaski, “Influence of Bath Composition to Via-Filling by Copper Electroplating,” J. J. Insitute of Electronics., 7/1, 2000. 39. 竇維平,「電鍍銅填充盲孔之技術發展」,電路板會刊第四十八期,第4-15頁,民國99年。 40. W. P. Dow, H. H. Chen, M. Y. Yen, W. H. Chen, and K. H. Hsu, “Through-Hole Filling by Copper Electroplating,” J. Electrochem. Soc., 155, D750-D757, 2008. 41. W. P. Dow, M. Y. Yen, S. Z. Liao, and Y. D. Chiu, “Filling Mechanism in Microvia Metallization by Copper Electroplating,” Electrochimica Acta, 53, 8228-8237, 2008. 42. S. C. Chang, J. M. Shieh, K. C. Lin, and B. T. Dai, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers,” J. Vac. Sci. Technol. B, 20, 1311-1316, 2002. 43. W. P. Dow, Y. D. Chiu, and Y. M. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide,” J. Electrochem. Soc., 156, D155-D167, 2009. 44. S. Soukane, S. Sen, and T. S. Caleb, “Feature Superfilling in Copper Electrochemical Deposition,” J. Electrochem. Soc., 149, C74-C81, 2002. 45. 陳祥豪,碩士論文,「填充微米級導孔與通孔之電鍍銅配方研究」,國立雲林科技大學,民國93年。 46. L. Xu, P. Dixit, J. Miao, and J. H. Pang, “Through-wafer Electroplated Copper Interconnect with Ultrafine Grains and High Density of Nanotwins,” Applied Physics Letters, 90, 033111, 2007. 47. N. Lin, J. Miao, and P. Dixit, “Mechanical and Microstructural Characterization of Through-Silicon Via Fabricated with Constant Current Pulse-Reverse Modulation,” J. Electrochem. Soc., 157, D323-D327, 2010. 48. P. Dixit, and J. Miao, “Aspect-Ratio-Dependent copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating,” J. Elctrochem. Soc., 153, G552-G559, 2006. 49. 廖國良,碩士論文,「化學添加劑對於化學方法製備銅奈米顆粒及銅薄膜於聚亞醯胺上之特性研究」,國立中興大學,民國98年。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3823-
dc.description.abstract電子產品要求尺寸越來越小,其優點:降低封裝的面積、更輕量化、更密集的連結密度、更高的可靠度,和在低電阻中表現更優異的電子性能。傳統印刷電路板電鍍通孔時,均擲力需達到100%。近年來雖然有人研究通孔電鍍,但電鍍結果效果不彰,吾人開發出新穎電鍍添加劑,利用陰極旋轉方式加上蝴蝶填孔技術,提高電流密度至9ASF,可縮短電鍍時間為2小時,完成填孔電鍍製程。 一般而言,平整劑是含四級銨 (N+) 的有機雜環化合物 (Azole Compound),藉由電化學分析法證實於混合多種添加劑之間的協合效應,混合多種添加劑有助於提高電流密度的需求及加強抑制劑的濃度梯度;給予微弱且固定的強制對流情況下,有相輔相成的效果,同樣也營造出孔中先行銅沉積的行為。 在硫酸系統下,透過線性掃描伏安法和計時電位分析法,銅電極在不同轉速下的方法被利用來研究此添加劑的特徵。電化學分析結果可顯示添加劑在電極表面位置上的電化學吸附能力。根據電化學分析之結果發現,此添加劑抑制銅沉積之行為與其濃度成正比,濃度越高,其脫附電位愈負,表現出多層吸附或是電化學聚合的行為。 最後吾人利用開發的新穎配方直接填通孔電鍍。孔徑為50um,深度為380um,深寬比高達7.6,電鍍時間只需要9小時便可完全填充。zh_TW
dc.description.abstractThe size of electronic products is requested to be smaller and smaller. They provide several advantages such as reduced packaging area, light weight, higher interconnection density, high reliability, and excellent electrical performance with lower resistance. For traditional electroplating through hole, the throwing power of 100% have to achieve then it can meet the requirement. In recent years, many people studied the through hole electroplating. However, they need a conducting layer to be assembled at the bottom to improve the process. We consider to develop a new formula for filling through-hole by copper electroplating, and we use butterfly technology (BFT) to fill up the through hole. It can be processed at high current density, and reduce electroplating time to filling up. In general, levelers bares tetrazolium compound, electrochemical analysis can characterize the additives' interaction in between. High current density could be applied and when multi-component formula was employed. In addition, multi-component formula can enhance the concentration gradient in the through hole. The filling performance of the multi-component formula could be enhanced with which weak and fixed forced convection combined. It could result in center-up filling mode. In sulfuric acid system, linear sweep voltammetry (LSV) and chronopotentiometry (CP) were employed to characterize these additives on copper electrode at different rotating speeds. The electrochemical analyses reveal the adsorptive ability of these additives on copper electrode. According to the electrochemical analyses, the inhibiting effect of the additive on copper deposition depends on the its concentration, that is, the higher the additive concentration, the more negative the desorption potential. This suggests that the adsorption of the additive may be multilayer or it may perform electrochemical polymerization on copper electrode. Finally, the through hole was fully filled by copper electroplating using the as-developed new formula. The hole diameter was 50 μm, the hole depth was 380 μm and the aspect ratio was 7.6. The total plating time just took 9 hours.en_US
dc.description.tableofcontents摘要................................................ⅰ Abstract............................................ⅱ 目錄................................................ⅲ 圖目錄..............................................ⅵ 表目錄..............................................xiii 第1章、 緒論.........................................1 第1-1節 前言.........................................1 第1-2節 研究動機與目的...............................3 第2章、 文獻回顧與電化學理論.........................5 第2-1節 銅製程技術...................................5 2-1.1 大馬士革雙鑲嵌技術 (Dual-damscene).............5 2-1.2 增層製程技術 (Build-up Process)................7 第2-2節 電鍍方式.....................................10 2-2.1 直流電電鍍.....................................10 2-2.2 脈衝式及反脈衝式電鍍...........................10 第2-3節 基礎電化學原理...............................12 2-3.1 電化學方法.....................................12 2-3.2 極化 (Polarization) 與過電壓 (Overpotential)...12 2-3.3 電子轉移與質傳控制.............................13 第2-4節 電鍍添加劑簡介...............................15 2-4.1 無機添加劑.....................................15 2-4.2 有機添加劑.....................................19 第2-5節 對流敏感性吸附理論...........................27 2-5.1 有電鍍添加劑...................................27 2-5.2 無電鍍添加劑...................................30 第2-6節 矽通孔(Through Silicon Via, TSV).............32 2-6.1 3D晶片堆疊發展.................................32 2-6.2 3D晶片填孔技術.................................34 第2-7節 不同平整劑藉由UV-vis 的量測..................38 第3章、 實驗藥品與實驗裝置、步驟.....................42 第3-1節 實驗藥品.....................................42 第3-2節 實驗裝置.....................................43 恆電位/電流儀.......................................45 金相顯微鏡...........................................46 紫外光- 可見光光譜儀 (Ultraviolet/ Visible, UV- vis).48 第3-3節 實驗步驟.....................................50 3-3.1 哈林試驗電鍍槽實驗.............................50 3-3.2 電化學分析實驗.................................51 第4章、 實驗結果與討論...............................53 第4-1節 基本電鍍液濃度...............................53 第4-2節 電鍍添加劑之電化學分析.......................54 4-2.1 循環伏安法.....................................54 4-2.2 計時電位法.....................................60 第4-3節 印刷電路板電鍍實驗...........................64 4-3.1 傳統電鍍添加劑對於電鍍銅沉積的影響.............65 4-3.2 對流對於電鍍添加劑吸附的影響...................68 第4-4節 矽晶圓電鍍實驗...............................75 4-4.1 不含電鍍添加劑 (只含氯離子)....................75 4-4.2 含電鍍添加劑...................................77 4-4.3 電化學分析.....................................87 第4-5節 新穎填充通孔電鍍配方之銅沉積模式.............91 第5章、 結論.........................................98 第6章、 未來發展方向.................................99 第7章、 參考文獻....................................100zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907201018302300en_US
dc.subjectCopper Electroplatingen_US
dc.subject電鍍銅zh_TW
dc.subjectThrough-hole Fillingen_US
dc.subjectButterfly technologyen_US
dc.subjectElectroplating Additivesen_US
dc.subject轉速效應zh_TW
dc.subject通孔電鍍zh_TW
dc.subject蝴蝶技術zh_TW
dc.subject電鍍添加劑zh_TW
dc.title通孔填充電鍍銅之配方開發zh_TW
dc.titleDevelopment of New Formula for Filling Through-Hole by Copper Electroplatingen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.