Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3824
標題: 化學方法製備鎳奈米顆粒及無鈀中性無電鍍銅配方於軟性聚亞醯胺基板之金屬化研究
Studies of Chemical Formation and Characterization of Ni Nanoparticles and Palladium-Free Neutral Electroless Copper Plating Formula Used for Metallization of Flexible Polyimide Film
作者: 黃上恩
Huang, Shang-En
關鍵字: Polyimide(PI);聚亞醯胺;Electroless Copper Deposition;Metallization;Nickel Nanoparticle;無電鍍銅;金屬化;鎳奈米顆粒
出版社: 化學工程學系所
引用: 1. 林振華,林振富,“高密度軟性電路板入門”,全華科技圖書,民國89年. 2. 張靖霖,“軟板製程技術與應用全覽”,亞洲智識科技,民國91 年. 3. 林定皓,“軟性電路板技術”,台灣電路板協會,民國92 年. 4. N. J. Chou, J. Paraszczak, E. Babich, J. Heidenreich, Y. S. Chaug, R. O. Goldbiatt, “X-ray Photoelectron and Infrared Spectroscopy of Microwave Plasma Etched Polyimide surfaces”, Journal of Vacuum Science and Technology A5, 1987, 4 , 1321. 5. J.R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, N. C. Tran, “Plasma source ion-implantation technique for surface modification of materials”, Journal of applied physics, 1987, 62, 11, 4591. 6. 蔡文發,“電漿原理與應用之介紹”,物理雙月刊,第28 卷二期,民國95 年. 7. R. R. Thomas, “Wetting Kinetics of Modified Polyimide Surfaces: Interactions of Polar Solvents”, Journal of Colloid and Interface Science, 2004, 279, 515. 8 . L. E. Stephans, A. Myles, R. R. Thomas, “ Kinetics of Alkaline Hydrolysis of a Polyimide Surface”, Langmuir, 2000, 16, 4706. 9. Y. S. Hsiao, W. T. Whang, S. C. We, K. R. Chuang,“Chemical Formation of Palladium-Fee Surface-Nickelized Polyimide Film for Flexible Electronics”, Thin Solid Films, 2008, 516, 4258. 10. K. Akamatsu, H. Nawafune, K. Akamatsu, H. Nawafune, “Copper/Polyimide Heterojunctions: Controlling Interfacial Structures Through an Additive-Based, All-Wet Chemical Process Using Ion-Doped Precursors”, Advanced Functional Materials, 2007, 07, 889. 11. S. Tomita, P. E. Jonsson, K. Akamatsu, H. Nawafune, H. Takayama, “Controlled Magnetic Properties of Ni Nanoparticles Embedded in Polyimide Films”, Physical Review B, 2007, 76, 174432. 12. J. D. Nam, S. S. Yoon, D. O. Kim, S. C. Park, Y. K. Lee, H. Y. Chae, S. B. Jung, “Direct Metallization of Gold Patterns on Polyimide Substrate by Microcontact Printing and Selective Surface Modification”, Microelectronic engineering, 2008, 85, 136. 13. Y. Kong, J. Shao, W. Wang, Z. Chen, H. Chu, “Surface Modification and Metallization of Polyimide Using Gold Colloids as a Seed Layer”, Journal of Applied Polymer Science, 2008, 111, 4. 14. S. We, S. Meng, “Preparation of Ultrafine Silver Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCI”, Materials Chemistry and Physics, 2005, 89, 423. 15. Z. Wu, S. Yang, D. Wu, S. Qi, G. Cui, R. Jin, “Fabrication of Highly Reflective and Conductive Double-Surface-Silvered Layers Embedded on Polymeric Films through All-Wet Process at Room Temperature”, Journal of Physics Chemistry, 2009, 113, 9694. 16. S. Ikeda, K. Akamatsu, H. Nawafune, T. Nishino, S. Deki, “Formation and Growth of Copper Nanoparticles from Ion-Doped Precursor Polyimide Layers”, Journal of Physics Chemistry B, 2004, 108, 15599. 17. Y. L. Q. Lu, X. Qian, Z. Zhu, J. Yin, “Preparation of Surface Bound Silver Nanoparticles on Polyimide by Surface Modification Method and Its Application on Electroless Metal Deposition”, Applied Surface Science, 2004, 233, 299. 18. K. Akamatsu, S. Ikeda, H. Nawafune, S. Deki, “Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers: Monodispersed Copper Nanoparticles in Polyimide Resins ” , Chemical Materials, 2003, 15, 2488. 19. D. Chen, Q. Lu, Y. Zhao, “Laser-Induced Site-Selective Silver Seeding on Polyimide for Electroless Copper Plating”, Applied Surface Science, 2006, 253, 1573. 20. K. Akamatsu, S. Ikeda, H. Nawafune, “Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers”, Langmuir, 2003, 19, 10366. 21. S. Ikeda, K. Akamatsu, H. Nawafune, “Direct Photochemical Formation of Cu Patterns on Surface Modified Polyimide Resin”, Journal of Materials Chemistry, 2001, 11, 2919. 22. 逢板哲爾,“化學反應製造金屬薄膜”,表面處理工業雜誌,第三期,民國85 年. 23. 張良中,“非導體表面之金屬化”,工業材料,第112 期,民國85 年. 24. 莊萬發,“無電解鍍金-化學鍍金技術”,復漢出版社,民國85 年. 25. M. Paunovic,“Electrochemical Aspects of Electroless Deposition of Metals”, Plating, 1968, 55, 1161. 26. R. Goldstein, P. Kukanskis, “Method and Composition for Continuous Electroless Copper Deposition Using a Hypophosphite Reducing Agent in the Presence of Cobalt or Nickel Ions”, U.S. Patent 4,265,943 , 1981. 27. R. Donald, “Electroless Copper Deposition Solutions with Hypophosphite Reducing Agent”, U.S. Patent 4,325,990, 1982. 28 . A. Hung, “ Electroless Copper Deposition with Hypophosphite as Reducing Agent”, Plating and Surface Finishing, 1988, 1, 62. 29. Y. Shacham-Diamand, S. Lopatin,“Integrated Electroless Metallization for ULSI ”, Electrochimica Acta, 1999, 44, 3639. 30. J.E.A.M. Van. Den. Meerakker,“On the Mechanism of Electroless PlatingI, Oxidation of Formaldehyde at Different Electrode Surface”, Journal of Applied Electrochemistry, 1981, 11, 387. 31. J.E.A.M. Van. Den. Meerakker, “ On the Mechanism of Electroless PlatingII, One Mechanism for Different Reductants”, Journal of Applied Electrochemistry, 1981, 11, 395. 32. H. Honma, T. Kobayashi,“Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent”, Journal of Electrochemical Society, 1994, 141, 3. 33. Y. M. Lin, S. Chern, “Effects of Additives and Chelating Agents on Electroless Copper Plating”, Applied Surface Science, 2001, 178, 116. 34 . J. Li, H. Hayden, P. A. Kohl, “The Influence of 2,2′-dipyridyl on Non-formaldehyde Electroless Copper plating”, Electrochimica Acta, 2004, 49, 11. 35. A. Kinoshita, K. Araki, H. Nawafune, S. Mizumoto, “Electroless Copper Plating Bath and Method”, US Patent 4,650,691, 1987. 36. L.N. Schoenberg, “Use of Organic Additives to Stabilize and Enhance the Deposition Rate of Eletroless Copper Plating”, Journal of the Electrochemical Society, 1972, 119, 11. 37. M. Sone, K. Kobayakawa, M. Saitou, Y. Sato, “Electroless Copper Plating Using FeII as a Reducing Agent”, Electrochimica Acta , 2004, 49, 233. 38. J. Li, P. A. Kohl, “The Acceleration of Nonformaldehyde Electroless Copper Plating”, Journal of the Electrochemical Society, 2002, 149, 12. 39. J. Li, P. A. Kohl, “ The Depositon Characteristics of Aceelerated Nonformaldehyde Electroless Copper Plating”, Journal of Electroanalytical Chemistry, 2003, 150, 8, 558. 40. A. Vaskelis, E. Norkus, “Autocatalytic Processes of Copper(II) and Silver(I) Reduction”, Electrochemica Acta, 1999, 44, 3667. 41. A. Vaskelis, J. Jaciauskiene, A. Jagminiene, E. Norkus, “Obtaining of IB Group Metal Film by Novel Electroless Deposition Method ”, Solid State Sciences, 2002, 4, 1299. 42. A. Vaskelis, I. Stankeviciene, A. Jagminiene, L. T. Tamasiunaite, E. Norkus,“ The Autocatalytic Reduction of Copper(II) by Cobolt(II) in Aqueous Diethylenetriamine Solution Studied by EQCM”, Journal of Electroanalytical Chemistry, 2008, 622, 136. 43. F. K. LeGoues, B. D. Silverman, P. S. Ho, “The Microstructure of Metal-Polyimide Interfaces”, Journal of Vacuum Science and Technology A6, 1988, 4 , 2200. 44. K. H. Kim, J. Kim, G. F. Walker, C. Feger, S. P. Kowalczyk, “Adhesion and interface investigation of polyimide on metals”, Journal of Adhesion Science Technology, 1988, 2, 1, 95. 45. 汪建民,“材料分析”,中國材料科學學會出版,民國87 年. 46. 張立,“微結構分析與電子顯微鏡學”,材料與社會雜誌,第37 期,79 年. 47. N. J. Harrick, “Internal Reflection Spectroscopy”, Wiley, New York, 1967. 48. G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscope”, Physical Review Letters, 1986, 56, 9, 930. 49. 蔡毓楨,薛富盛,呂福興,吳宗明,“原子力顯微鏡實作訓練教材”,五南圖書出版,民國96 年. 50. 潘扶民,洪顯仁,林毓麟,郭裕銘,“ESCA, AES 及SIMS 表面分析技術”,材料與社會雜誌,第37 期,民國79 年. 51. 許樹恩,吳泰伯,“X 光繞射原理與材料結構分析”,中國材料科學學會,民國85 年. 52. 林麗娟,“X 光繞射原理及其應用”,工業材料雜誌,第86 期,民國83 年. 53 . D. K. Schroder, “ Semiconductor Material and Device Characterization”,Wiley-Interscience, 2005. 54. I. Ohno, O. Wakabayash, S. Haruyama, “Anodic Oxidation of Reductants in Electroless Plating”, Journal of Electroanalytical Chemistry, 1985, 132,2323. 55. A. Hung, “Electrochemical Study of Hypophosphite-Reduced Electroless Copper Deposition”, Journal of Electroanalytical Chemistry, 1990, 137, 3. 56. A. Hung, I. Ohno, “Effect of pH on Hypophosphite-Reduced Electrolss Copper”, Plating and Surface Finishing, 1990, 54. 57. C. H. Lee, A. R. King, H. C. Koo, J. J. Kim, “ Effect of 2-Mercapto-5-benzimidazolesulfonic Acid in Superconformal Cu Electroless Deposition”, Journal of Electroanalytical Chemistry, 2009, 156, 6. 58. C. H. Lee, S. K. Cho, J. J. Kim, “Electroless Cu Bottom-Up Filling Using 3-N,N-Dimethylaminodithiocarbamoyl-1-propanesulfonic acid”, Electrochemical and Solid-State Letters, 2005, 8, 11. 59. H. K. Lee, S. H. Son, H. Y. Lee, S. B. Koo, “Adhesion Enhancement of Electroplated Cu/Electroless Ni Composite Layer to (PMDA-ODA)-Type Polyimide Films”, Journal of Adhesion Science and Technology, 2008, 22, 47. 60. W. P. Dow, G. L. Liao, S. E. Huang, S. W. Chen, “Modification of Cu nanoparticles with a disulfide for polyimide metallization ” , Journal of Materials Chemistry, 2010, 20, 3600. 61. 白木 靖寬,吉田 貞史,“薄膜工程學”,全華科技圖書,民國93 年。 62. J. Tkac, J. J. Davis, “An Optimized Electrode Pre-treatment for SAM Formation on Polycrystalline Gold”, Journal of Electroanalytical Chemistry, 2008,621,117. 63. L. C. Nagle, J. F. Rohan, “Ammonia Borane Oxidation at Gold Microelectrodes in Alkaline Solutions”, Journal of Electrochemical Society, 2006, 153, 11, 773. 64. L. C. Nagle, J. F. Rohan, “Investigation of DMAB Oxidation at a Gold Microelectrode in Base”, Electrochemical and Solid-State Letters,2005, 8, 5, 77. 65 . T. Homma, I. Komatsu, A. Tamaki, H. Nakai, T. Osaka, “Molecular Orbital Study on the Reaction Mechanisms of Electroless Deposition Processes”, Electrochimica Acta, 2001, 47,47. 66. T. Homma, A. Tamiki, H. Nakai, T. Osaka, “Molecular Orbital Study on the Reaction Process of Dimethylamine Borane as a Reductant for Electroless Deposition”, Journal of Electroanalytical Chemistry, 2003, 559, 131. 67. S. C. Freilich, F. S. Ohuchi, “Reaction at the Polyimide-Metal Interface”, Polymer, 1987, 28, 1908. 68. F. S. Chuchi, S. C. Freilich, “Summery Abstract- Ti as a Diffusion Barrier between Cu and Polyimide”, Journal of Vacuum Science and Technology, 1988, A6, 3, 1004. 69. F. S. Chuchi, S. C. Freilich, “Metal polyimide interface: A titanium reaction mechanism”, Journal of Vacuum Science and Technology, 1986, A4, 3, 1039. 70. J. G. Clabes, “Correlation of Interface Chemistry and Growth Mode of Ce on polyimide(pyromellitic dianhydride-oxydianiline)”, Journal of Vacuum Science and Technology, 1988, A6, 2887. 71. F. Faupel, R. Willecke, A. Thran, “Diffusion of Metal in Polymers”, Materials Science and Engineering, 1998, R22,1.
摘要: 
近年來,電子構件朝向高密度和高精密化邁進,製程進入微奈米領域,追求輕、薄、短、小的多功能產品,故軟性印刷電路板和軟硬結合板的需求大幅成長,軟性印刷電路板是輕薄且具有可撓曲特性的介電材料,可用於連續動態可彎折的產品,如:數位相機、手機、筆記型電腦等,在材料的選擇上,因應電路中電子傳輸頻率的提升和使用環境溫度的提升,具有高耐熱性、機械性和電氣性質的聚亞醯胺(Polyimide,簡稱PI)成為首選。如何將不導電的聚亞醯胺金屬化以便製作微米線路,並使銅箔與PI間有好的附著力,在製程上降低成本,改善傳統製程,皆為目前待克服問題也是本研究所著重的目標。
利用全濕製程方式,將聚亞醯胺基板進行直接金屬化,使鎳奈米顆粒(NNPs)直接沉積於聚亞醯胺表面,再以NNPs為晶種層催化後續無電鍍液使銅層增厚,由於聚亞醯胺的不耐鹼,吾人選用中性的無電鍍液減少在無電鍍時對聚亞醯胺基板的傷害。由於在還原步驟中,還原劑二甲基胺硼烷對鎳金屬的還原力不佳,使得NNPs在PI表層並沒有很好的覆蓋率和催化活性,且有部分NNPs會包覆在內層PI中而沒有作用,吾人藉由添加無機鹽硫酸銅、硝酸銀、氯化鈀來提升二甲基胺硼皖的氧化反應,快速丟出電子還原鎳離子,改善NNPs的表面形態和催化活性,使得後續無電鍍的沉積速率因而提升,原本內層PI殘留的NNPs也減少許多,後續在量測無電鍍銅的導電性與附著性皆良好,在此稱加入無機鹽於還原劑中所得的NNPs為PE-NNPs (Performance-Enhanced NNPs)。吾人藉由各種儀器分析各添加劑所扮演的角色,例如:場發射掃描式電子顯微鏡分析NNPs的表面形態,藉由穿透式電子顯微鏡分析樣品的橫截面,藉由電子能譜儀分析元素分布,並藉由恆電位儀分析添加劑的作用。

Currently, electronic products tend toward high density and further precision. Processes become micro-scale and nano-scale, pursuing lightness, thinness, miniaturization and multi-function products. The need of flexible printed circuit board (FPC) and rigid-flex PCB are growing by a large margin. FPC is thin and flexible dielectric material used for dynamic and rollable products such as camera, cell phone, and notebook. For the fabrication of FPCs, polyimides(PIs) is elect substrate because of many outstanding properties, such as high thermal stability, good mechanical strength, and low dielectric constants. There are some problems of FPC preparation, so this work emphasizes PI surface metallization for preparing circuits, good adhesion between copper foil and PIs, to reduce the costs of procedure and to improve traditional process.
This work used an overall wet process to carry out direct superficial metallization, causing nickel nanoparticles (NNPs) to deposit on PI surface. NNPs serve as seed layer to catalyze following copper electroplating, thickening and flattening the copper layer formed on PI. In addition, traditional electroless plating solution is alkaline and not unsuitable for PI, we replace by neutral electroless plating solution to reduce damage. Owing to weak reductivity of dimethylamine borane(DMAB) for NNPs formation, NNPs on PI surface have poor coverage and poor catalytic activity. Furthermore, there are some NNPs formed in interior PI which is useless for electroless plating. To solve those problems, we add some additive like CuSO4, PdCl2, AgNO3 to improve oxidation rate of DMAB, causing DMAB to release electrons rapidly for Ni ions reduction. Performance-enhanced NNPs (PE-NNPs) have uniform distribution and less NNPs exist in interior PI. Hence, the rate of electroless deposition is enhanced as well due to the PE-NNPs. By the way, the adhesion between copper and PI and electric conductivity of copper deposition are still good. Results show that these chemical additives possess considerable influence on the formation of metal nanoparticles on chemically modified PI film. The samples are characterized by FE-SEM, TEM, ESCA and potentiostat analyses in order to understand their morphology, cross-section distribution, element composition and reaction of additive.
URI: http://hdl.handle.net/11455/3824
其他識別: U0005-1907201020065100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.