Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3826
標題: 三磷酸腺苷對N-乙醯-D-葡萄糖胺-2-差向異構酶活性之影響
Effect of Adenosine Triphosphate on the Activity of N-Acetyl-D-Glucosamine 2-Epimerase
作者: 陳春帆
Chen, Chuen-Fan
關鍵字: 差向異構酶三磷酸腺苷;epimerase;ATP
出版社: 化學工程學系所
引用: 參考文獻 1. Smith, A., S.P. Datta, G.H. Smith, P.N. Campbell, R. Bentley, and H.A. McKenzie, Oxford Dictionary of Biochemistry and Molecular Biology. 1997: Oxford University Press. 2. Lenchinger, A.L. Principles of Biochemistry 1982: Worth publishers, Inc. 209-210. 3. Bull, A.T., A.W. Bunch, and G.K. Robinson, Biocatalysts for clean industrial products and processes. Current Opinion in Microbiology, 1999. 2(3): p. 246-251. 4. Farinas, E.T., T. Bulter, and F.H. Arnold, Directed enzyme evolution. Current Opinion in Biotechnology, 2001. 12(6): p. 545-551. 5. Anfinsen, C.B., Principles that Govern the Folding of Protein Chains. Science, 1973. 181(4096): p. 223-230. 6. Broderick, J.B., Coenzymes and Cofactors in Encyclopedia of Life Sciences. 2001, John Wiley & Sons, Inc. 7. Bugg, T., An Introduction to Enzyme and Coenzyme Chemistry. 1997, Blackwell Science Ltd. p. 16-18. 8. Ghosh, S. and S. Roseman, The Sialic Acids. V. N-acyl-D-Glucosamine 2-Epimerase. Journal of Biological Chemistry, 1965. 240(4): p. 1531-1536. 9. Itoh, T., B. Mikami, I. Maru, Y. Ohta, W. Hashimoto, and K. Murata, Crystal structure of N-acyl-D-glucosamine 2-epimerase from porcine kidney at 2.0 Å resolution. Journal of Molecular Biology, 2000. 303(5): p. 733-744. 10. Takahashi, S., M. Kumagai, S. Shindo, K. Saito, and Y. Kawamura, Renin Inhibits N-Acetyl-D-Glucosamine 2-Epimerase (Renin-Binding Protein). Japanese Biochemical Society, 2000. 128(6): p. 951-956. 11. Takahashi, S., K. Takahashi, T. Kaneko, H. Ogasawara, S. Shindo, and M. Kobayashi, Human Renin-Binding Protein Is the Enzyme N-Acetyl-D-Glucosamine 2-Epimerase. Japanese Biochemical Society, 1999. 125(2): p. 348-353. 12. Kragl, U., D. Gygax, O. Ghisalba, and C. Wandrey, Enzymatic Two-Step Synthesis of N-Acetyl-neuraminic Acid in the Enzyme Membrane Reactor. Angewandte Chemie International Edition in English, 1991. 30(7): p. 827-828. 13. Sticher, U., H.J. Gross, and R. Brossmer, Purification and characterization of α(2-6)-sialyltransferase from human liver Glycoconjugate Journal 1991. 8: p. 45-54. 14. Vimr, E. and C. Lichtensteiger, To sialylate, or not to sialylate: that is the question. Trends in Microbiology, 2002. 10(6): p. 254-257. 15. Colman, P.M., A novel approach to antiviral therapy for influenza. J. Antimicrob. Chemother., 1999. 44(suppl_2): p. 17-22. 16. 李晏忠, 利用蛋白質之工程技術改造 N-acetyl-D-glucosamine 2-epimerase 及N-acetyl-neuraminate aldoase的性質. 1999, 工業技術研究院委託學術機構研究報告: 台中. 17. Luchansky, S.J., K.J. Yarema, S. Takahashi, and C.R. Bertozzi, GlcNAc 2-Epimerase Can Serve a Catabolic Role in Sialic Acid Metabolism. Journal of Biological Chemistry, 2003. 278(10): p. 8035-8042. 18. Spivak, C.T. and S. Roseman, Preparation of N-Acetyl-D-mannosamine (2-Acetamido-2-deoxy-D-mannose) and D-Mannosamine Hydrochloride (2-Amino-2-deoxy-D-mannose)1. Journal of the American Chemical Society, 1959. 81(10): p. 2403-2404. 19. Blayer, S., J.M. Woodley, M.D. Lilly, and M.J. Dawson, Characterization of the Chemoenzymatic Synthesis of N-Acetyl-D-neuraminic Acid (Neu5Ac). Biotechnology Progress, 1996. 12(6): p. 758-763. 20. Blayer, S., J.M. Woodley, M.J. Dawson, and M.D. Lilly, Alkaline biocatalysis for the direct synthesis of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). Biotechnology and Bioengineering, 1999. 66(2): p. 131-136. 21. Maru, I., J. Ohnishi, Y. Ohta, and Y. Tsukada, Simple and large-scale production of N-acetyl neuraminic acid from N-acetyl-D-glucosamine and pyruvate using N-acyl-D-glucosamine 2-epimerase and N-acetyl neuraminate lyase. Carbohydrate Research, 1998. 306(4): p. 575-578. 22. Datta, A., Regulatory role of adenosine triphosphate on hog kidney N-acetyl-D-glucosamine 2-epimerase. Biochemistry, 1970. 9(17): p. 3363-3370. 23. Lee, Y.C., H.C.R. Chien, and W.H. Hsu, Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase. Journal of Biotechnology, 2007. 129(3): p. 453-460. 24. 曾資棟, 差向異構酶包涵體復性最適化. 2003, 國立中興大學: 台中. 25. Keppler, O.T., R. Horstkorte, M. Pawlita, C. Schmidt, and W. Reutter, Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology, 2001. 11(2): p. 11R-18. 26. Nelson, D.L. and M.M. Cox, Lehninger Principles of Biochemistry. 4 ed. 2005, New York: W.H. Freeman and Company. 27. E.Walker, J., M. Saraste, M. J.Runswick, and N. J.Gay, Distantly related sequences in the α- and β-subunits of ATP synthase,myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO. J., 1982. 1(8): p. 945-951. 28. Koonin, E.V., A Superfamily of ATPases with Diverse Functions Containing Either Classical or Deviant ATP-binding Motif. Journal of Molecular Biology, 1993. 229(4): p. 1165-1174. 29. Saraste, M., P.R. Sibbald, and A. Wittinghofer, The P-loop -- a common motif in ATP- and GTP-binding proteins. Trends in Biochemical Sciences, 1990. 15(11): p. 430-434. 30. Takahashi, S., K. Hori, K. Takahashi, H. Ogasawara, M. Tomatsu, and K. Saito, Effects of Nucleotides on N-Acetyl-D-Glucosamine 2-Epimerases (Renin-Binding Proteins): Comparative Biochemical Studies. J Biochem, 2001. 130(6): p. 815-821. 31. 謝孟鋼, 酵素法生產N-乙醯甘露醣胺之研究. 2009, 國立中興大學: 台中. 32. Kennard, O., N.W. Isaacs, W.D.S. Motherwell, J.C. Coppola, D.L. Wampler, A.C. Larson, and D.G. Watson, The Crystal and Molecular Structure of Adenosine Triphosphate. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971. 325(1562): p. 401-436. 33. Cao, L., Carrier-bound immobilized enzymes: principles, applications and design 2005, Weinheim: Wiley-VCH. 34. Cao, L., Immobilised enzymes: science or art? Current Opinion in Chemical Biology, 2005. 9(2): p. 217-226. 35. Buchholz, K., Reaction engineering parameters for immobilized biocatalysts. 1982, Springer Berlin / Heidelberg. p. 39-71. 36. Cabral, J.M.S. and J.F. Kennedy, Thermostability of Enzymes, M.N. Gupta, Editor. 1993, Springer Verlag: Berlin. p. 163-179. 37. Klibanov, A.M., Enzyme stabilization by immobilization. Analytical Biochemistry, 1979. 93: p. 1-25. 38. Katchalski-Katzir, E., Immobilized enzymes -- learning from past successes and failures. Trends in Biotechnology, 1993. 11(11): p. 471-478. 39. Guisan, J.M., ed. Immobilization of enzymes and cells. 2 ed. 2006, Humana Press: New Jersey. 40. Sheldon, Roger A., Enzyme Immobilization: The Quest for Optimum Performance. Advanced Synthesis & Catalysis, 2007. 349(8-9): p. 1289-1307. 41. Chaplin, M.F. and C. Bucke, Enzyme Technology 1990: Press Syndicate of the University of Cambridge. 42. Braun, S., S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Biochemically active sol-gel glasses: the trapping of enzymes. Materials Letters, 1990. 10(1-2): p. 1-5. 43. Avnir, D., S. Braun, O. Lev, and M. Ottolenghi, Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chemistry of Materials, 1994. 6(10): p. 1605-1614. 44. Engler, C.R., A.G. III, and S. Oh, Cellulase immobilization on Fe3O4 and characterization. Biotechnology and Bioengineering, 1989. 33(3): p. 321-326. 45. Cao, L., L.v. Langen, and R.A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free? Current Opinion in Biotechnology, 2003. 14(4): p. 387-394. 46. Gupta, P., K. Dutt, S. Misra, S. Raghuwanshi, and R.K. Saxena, Characterization of cross-linked immobilized lipase from thermophilic mould Thermomyces lanuginosa using glutaraldehyde. Bioresource Technology, 2009. 100(18): p. 4074-4076. 47. Busto, M.D., N. Ortega, and M. Perez-Mateos, Stabilisation of cellulases by cross-linking with glutaraldehyde and soil humates. Bioresource Technology, 1997. 60(1): p. 27-33. 48. Sheldon, R.A., Cross-linked enzyme aggregates (CLEA®s): stable and recyclable biocatalysts. Biochemical Society Transactions, 2007. 035(6): p. 1583-1587. 49. Tischer, W. and V. Kasche, Immobilized enzymes: crystals or carriers? Trends in Biotechnology, 1999. 17(8): p. 326-335. 50. Bryjak, J. and B.N. Kolarz, Immobilisation of trypsin on acrylic copolymers. Process Biochemistry, 1998. 33(4): p. 409-417. 51. Martinek, K., A.M. Klibanov, V.S. Goldmacher, and I.V. Berezin, The principles of enzyme stabilization I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica et Biophysica Acta (BBA) - Enzymology, 1977. 485(1): p. 1-12. 52. Messing, R.A., Immobilized Enzymes for Industrial Reactors. 1975, London: Academic Press. 53. 顏敏智, 以固定化酵素生產L-同苯丙胺酸. 2007, 國立中興大學: 台中. 54. Seip, J.E., S.K. Fager, J.E. Gavagan, D.L. Anton, and R. Di Cosimo, Glyoxylic acid production using immobilized glycolate oxidase and catalase. Bioorganic & Medicinal Chemistry, 1994. 2(6): p. 371-378. 55. Katchalski-Katzir, E. and D.M. Kraemer, Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic, 2000. 10(1-3): p. 157-176. 56. Cao, L., F. van Rantwijk, and R.A. Sheldon, Cross-Linked Enzyme Aggregates: A Simple and Effective Method for the Immobilization of Penicillin Acylase. Organic Letters, 2000. 2(10): p. 1361-1364. 57. Mateo, C., J.M. Palomo, L.M.v. Langen, F.v. Rantwijk, and R.A. Sheldon, A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnology and Bioengineering, 2004. 86(3): p. 273-276.
摘要: 
在酵素法製備唾液酸(sialic acid, NeuAc)的製程中,其主要原料為N-acetyl-D-mannosamine (ManNAc)。然而為了節省反應物成本,提出了先以價格低廉的N-acetyl -D-glucosamine (GlcNAc)經由GlcNAc 2-epimerase催化生成ManNAc的二步化酵素法。然而在此催化反應中,三磷酸腺苷(Adenosine Triphosphate, ATP)扮演了控制酵素活性的關鍵角色。本研究探討ATP濃度對自由態酵素活性之影響,以及添加ATP與酵素進行共固定化後對固定化酵素活性的影響。對自由態酵素而言,基質中ATP濃度為1.0 mM時酵素即發揮最大催化活性。在ATP共固定化的研究中,以未添加ATP共固定化做為控制組,共價鍵結法的最適ATP添加濃度為15 mM,其相對活性較控制組高74.2%;交聯鍵結法的最適ATP添加濃度為12 mM,其相對活性則是高出控制組83.3% 。在進行重複式批次操作下,無論是共價鍵結或是交聯鍵結法, ATP共固定化酵素僅有第一次批次有活性表現,第二次批次後相較於控制組幾無差別。

N-acetyl-D-manosamine, ManNAc, is the precursor for the biosynthesis of sialic acid, NeuAC. To reduce the cost of substrate, an two-enzyme process with N-acetyl-D-glucosamine 2-epimerase, GlcNAc2-epimerase, as the catalyst has been proposed, enabling the use of relatively inexpensive N-acetyl-D-glucosamine, as the starting reactant. Adenosine Triphosphate, ATP, is the activator for GlcNAc 2-epimerase for the alternative process. In this study, we search for the effect of ATP concentration on the activity of the free enzyme and the activity of the enzyme of co-immobilized with ATP. For the free enzyme,the activity will be the maximum as the concentration of ATP in the substrate reaches 1.0mM. For the study of enzyme co-immobilization with ATP, we regard the immobilized enzyme as the control group. The optimal concentration of ATP was 15 mM for the covalent bonding method and 12 mM for the cross-linking method, in these condition the relative activity was 74.2% and 83.3% higher than the control respectively. During the repetitive batch operation, the activity of immobilized enzyme which co-immobilized with ATP appears only at the first batch either covalent bonding or cross-linking method. There is no influence compared with the control after the second batch.
URI: http://hdl.handle.net/11455/3826
其他識別: U0005-1908201000574600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.