Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3829
DC FieldValueLanguage
dc.contributor鄭文桐zh_TW
dc.contributor施志欣zh_TW
dc.contributor.advisor張厚謙zh_TW
dc.contributor.author施淳元zh_TW
dc.contributor.authorShin, Chun-Yuanen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T05:32:52Z-
dc.date.available2014-06-06T05:32:52Z-
dc.identifierU0005-1908201015401000zh_TW
dc.identifier.citation1. Al-Saidan, S.M.A., Winfield, A.J., and Selkirk, A.B. (1987). Effect of Preheating on the Permeability of Neonatal Rat Stratum Corneum to Alkanols. J Investig Dermatol 89, 430-433. 2. Anissimov, Y.G., and Roberts, M.S. (1999). Diffusion modeling of percutaneous absorption kinetics. 1. Effects of flow rate, receptor sampling rate, and viable epidermal resistance for a constant donor concentration. Journal of Pharmaceutical Sciences 88, 1201-1209. 3. Barratt, M.D. (1995). Quantitative structure-activity relationships for skin permeability. Toxicology in Vitro 9, 27-37. 4. Barry, B.W. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences 14, 101-114. 5. Barry, B.W. (2002). Drug delivery routes in skin: a novel approach. Advanced Drug Delivery Reviews 54, S31-S40. 6. Behl, C.R., Linn, E.E., Flynn, G.L., Ho, N.F.H., Higuchi, W.I., and Pierson, C.L. (1983). Permeation of skin and eschar by antiseptics II: Influence of controlled burns on the permeation of phenol. Journal of Pharmaceutical Sciences 72, 397-400. 7. Bouwstra, J.A., Honeywell-Nguyen, P.L., Gooris, G.S., and Ponec, M. (2003). Structure of the skin barrier and its modulation by vesicular formulations. Progress in Lipid Research 42, 1-36. 8. Bulut, M., Turkmen, N., Fedakar, R., and Aydin, S. (2006). A Case Report of Fatal Oral Ingestion of Resorcinol. Mount Sinai Journal of Medicine 73, 1049. 9. Carpentieri-Rodrigues, L., Zanluchi, J., and Grebogi, I. (2007). Percutaneous absorption enhancers: mechanisms and potential. Brazilian Archives of Biology and Technology 50, 949-961. 10. Cartlidge, P. (2000). The epidermal barrier. Seminars in Neonatology 5, 273-280. 11. Charalambopoulou, G.C., Steriotis, T.A., Hauss, T., Stubos, A.K., and Kanellopoulos, N.K. (2004). Structural alterations of fully hydrated human stratum corneum. Physica B: Condensed Matter 350, E603-E606. 12. Costin, G.-E., and Hearing, V.J. (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21, 976-994. 13. Degim, I.T. (2006). New tools and approaches for predicting skin permeability. Drug Discovery Today 11, 517-523. 14. Degim, I.T., Pugh, W.J., and Hadgraft, J. (1998). Skin permeability data: anomalous results. International Journal of Pharmaceutics 170, 129-133. 15. Downing, D. (1992). Lipid and protein structures in the permeability barrier of mammalian epidermis. J Lipid Res 33, 301-313. 16. Finnin, B.C., and Morgan, T.M. (1999). Transdermal penetration enhancers: Applications, limitations, and potential. Journal of Pharmaceutical Sciences 88, 955-958. 17. Flynn, G. (1990). Physicochemical determinants of skin absorption. Principles of route-to-route extrapolation for risk assessment, 93-127. 18. Frum, Y., Bonner, M.C., Eccleston, G.M., and Meidan, V.M. (2007). The influence of drug partition coefficient on follicular penetration: In vitro human skin studies. European Journal of Pharmaceutical Sciences 30, 280-287. 19. Fuchs, E., and Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3, 199-209. 20. Grimes, P. (1999). The safety and efficacy of salicylic acid chemical peels in darker racial-ethnic groups. Dermatologic Surgery 25, 18-22. 21. Gunt, H.B., and Kasting, G.B. (2007). Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. European Journal of Pharmaceutical Sciences 32, 254-260. 22. Hadgraft, J., and Lane, M.E. (2005). Skin permeation: The years of enlightenment. International Journal of Pharmaceutics 305, 2-12. 23. Heather, A.E.B. (2005). Transdermal Drug Delivery: Penetration Enhancement Techniques. Current Drug Delivery 2, 23-33. 24. Heggie, G.D., Sommadossi, J.-P., Cross, D.S., Huster, W.J., and Diasio, R.B. (1987). Clinical Pharmacokinetics of 5-Fluorouracil and Its Metabolites in Plasma, Urine, and Bile. Cancer Research 47, 2203-2206. 25. Jain, A., and Panchagnula, R. (2003). Effect of temperature on imipramine hydrochloride permeation: Role of lipid bilayer arrangement and chemical composition of rat skin. International Journal of Pharmaceutics 250, 287-293. 26. Kim, C.-j. (2000). controlled release dosage from design (Informa Health Care). 27. Kwon, Y. (2002). Handbook of essential pharmacokinetics, pharmacodynamics and drug metabolism for industrial scientists[electronic resource] (New York, Kluwer Academic Pubkishers). 28. Landmann, L. (1986). Epidermal permeability barrier: transformation of lamellar granule-disks into intercellular sheets by a membrane-fusion process, a freeze-fracture study. Journal of Investigative Dermatology 87, 202-209. 29. Lian, G., Chen, L., and Han, L. (2008). An evaluation of mathematical models for predicting skin permeability. Journal of Pharmaceutical Sciences 97, 584-598. 30. Liron, Z., and Cohen, S. (1984). Percutaneous absorption of alkanoic acids I: A study of operational conditions. Journal of Pharmaceutical Sciences 73, 534-537. 31. Liron, Z., and Cohen, S. (2006). Percutaneous absorption of alkanoic acids II: Application of regular solution theory. Journal of Pharmaceutical Sciences 73, 538-542. 32. Longley, D.B., Harkin, D.P., and Johnston, P.G. (2003). 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3, 330-338. 33. Lynch, B., Delzell, E., and Bechtel, D. (2002). Toxicology review and risk assessment of resorcinol: thyroid effects. Regulatory toxicology and pharmacology 36, 198-210. 34. Marjukka Suhonen, T., A. Bouwstra, J., and Urtti, A. (1999). Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. Journal of Controlled Release 59, 149-161. 35. Menon, G.K. (2002). New insights into skin structure: scratching the surface. Advanced Drug Delivery Reviews 54, S3-S17. 36. Micoli, G., Turci, R., Arpellini, M., and Minoia, C. (2001). Determination of 5-fluorouracil in environmental samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications 750, 25-32. 37. Mitragotri, S. (2007). Temperature dependence of skin permeability to hydrophilic and hydrophobic solutes. Journal of Pharmaceutical Sciences 96, 1832-1839. 38. Moser, K., Kriwet, K., Naik, A., Kalia, Y., and Guy, R. (2001). Passive skin penetration enhancement and its quantification in vitro. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fA r Pharmazeutische Verfahrenstechnik eV 52, 103. 39. Moss, G.P., Dearden, J.C., Patel, H., and Cronin, M.T.D. (2002). Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicology in Vitro 16, 299-317. 40. Naik, A., Kalia, Y.N., and Guy, R.H. (2000). Transdermal drug delivery: overcoming the skin''s barrier function. Pharmaceutical Science & Technology Today 3, 318-326. 41. Nitsche, J.M., Wang, T.-F., and Kasting, G.B. (2006). A two-phase analysis of solute partitioning into the stratum corneum. Journal of Pharmaceutical Sciences 95, 649-666. 42. Park, E., Moon, W., Song, M., Kim, M., Chung, K., and Yoon, J. (2001). Antimicrobial activity of phenol and benzoic acid derivatives. International Biodeterioration & Biodegradation 47, 209-214. 43. Park, J.-H., Lee, J.-W., Kim, Y.-C., and Prausnitz, M.R. (2008). The effect of heat on skin permeability. International Journal of Pharmaceutics 359, 94-103. 44. Prausnitz, M.R., Mitragotri, S., and Langer, R. (2004). Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3, 115-124. 45. Rastogi, S.K., and Singh, J. (2001). Lipid extraction and transport of hydrophilic solutes through porcine epidermis. International Journal of Pharmaceutics 225, 75-82. 46. Rawlings, A.V., and Harding, C.R. (2004). Moisturization and skin barrier function. Dermatologic Therapy 17, 43-48. 47. SARTORELLI, P., APREA, C., CENNI, A., NOVELLI, M.T., ORSI, D., PALMI, S., and MATTEUCCI, G. (1998). Prediction of Percutaneous Absorption from Physicochemical Data: A Model Based on Data of In Vitro Experiments. Ann Occup Hyg 42, 267-276. 48. Scheuplein, R.J. (1967). Mechanism of Percutaneous Absorption. The Journal of Investigative Dermatology 48, 79-88. 49. Schmook, F.P., Meingassner, J.G., and Billich, A. (2001). Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. International Journal of Pharmaceutics 215, 51-56. 50. Sherertz, E.F., Sloan, K.B., and McTiernan, R.G. (1987). Use of Theoretical Partition Coefficients Determined From Solubility Parameters to Predict Permeability Coefficients for 5-Fluorouracil. J Investig Dermatol 89, 147-151. 51. Tang, H., Blankschtein, D., and Langer, R. (2002). Prediction of steady-state skin permeabilities of polar and nonpolar permeants across excised pig skin based on measurements of transient diffusion: Characterization of hydration effects on the skin porous pathway. Journal of Pharmaceutical Sciences 91, 1891-1907. 52. Tfouni, S., and Toledo, M. (2002). Determination of benzoic and sorbic acids in Brazilian food. Food Control 13, 117-123. 53. Thomas, B.J., and Finnin, B.C. (2004). The transdermal revolution. Drug Discovery Today 9, 697-703. 54. Thong, H.Y., Zhai, H., and Maibach, H.I. (2007). Percutaneous Penetration Enhancers: An Overview. Skin Pharmacology and Physiology 20, 272-282. 55. Van Hal, D.A., Jeremiasse, E., Junginger, H.E., Spies, F., and Bouwstra, J.A. (1996). Structure of Fully Hydrated Human Stratum Corneum: A Freeze-Fracture Electron Microscopy Study. J Investig Dermatol 106, 89-95. 56. Wang, L., and Kuo, Y. (1999). Simultaneous quantitative determination of resorcinol and 1-naphthol in haircolor products by high-performance liquid chromatography. Chromatographia 49, 208-211. 57. Warner, R.R., Boissy, Y.L., Lilly, N.A., Spears, M.J., McKillop, K., Marshall, J.L., and Stone, K.J. (1999). Water Disrupts Stratum Corneum Lipid Lamellae: Damage is Similar to Surfactants1. 113, 960-966. 58. Warner, R.R., Stone, K.J., and Boissy, Y.L. (2003). Hydration Disrupts Human Stratum Corneum Ultrastructure. J Investig Dermatol 120, 275-284. 59. Williams, A., and Barry, B. (2004). Penetration enhancers. Advanced Drug Delivery Reviews 56, 603-618.en_US
dc.identifier.urihttp://hdl.handle.net/11455/3829-
dc.description.abstract水在藥物經皮輸送系統中是常用的溶劑同時也是化學促滲劑(chemical enhancer),因此探討水對皮膚的影響,是一項值得探討的題目。在研究結果,我們希望能夠求得一系列不同親脂性藥物的有效滲透係數,各個藥物都將有一系列滲透係數在時間影響下的變化值,這項方法將幫助我們了解水合作用對藥物經皮傳遞之影響。本研究主要目的是希望使用簡易且精確的數值模型擬合(curve fitting)求得各類藥物之有效滲透係數,在能夠求得精準的滲透係數之前提下,我們希望能夠藉此量化在水合作用下各種不同親脂性(Ko/w)藥物之有效滲透係數變化程度,並試圖了解皮膚水合作用的機制。探討48小時內皮膚水合作用之實驗,期間以兩小時為間隔取得各個時間點之藥物累積滲透量,之後將此數據與數值模型進行擬合得到隨著時間產生變化之有效滲透係數。zh_TW
dc.description.abstractWater not only serves as a solvent, but also is a chemical penetration enhancer in transdermal drug delivery system. Therefore, the hydration of skin is an important topic. In the study, we aim at obtaining a series of effective permeability coefficients of drugs, with a range of lipophilicity along with the corresponding drug release curves, which provide an important approach for the investigation of the effect of hydration on transdermal drug delivery. The main purpose of this study is to use a simple and accurate numerical model to fit the effective permeability coefficient for various drugs. as the precise quantification of effective permeability is obtained, attempts are made to elucidate the mechanism for the hydration of skin impacting the effective permeability of skin. And drugs of various lipophilicity(termed Ko/w) are investigated to study the correlation between lipophilicity of drug molecules and the hydration of the stratum corneum layer.en_US
dc.description.tableofcontents摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第一章 前言 1 第二章 文獻回顧 2 第一節 經皮給藥系統 2 第二節 皮膚結構 5 一、 真皮層 6 二、 皮下組織 6 三、 表皮層 7 第三節 經皮給藥途徑 8 一、 直接穿透角質細胞途徑(Transcellular Route) 9 二、 附屬器途徑(Appendage Route) 9 三、 角質細胞間隙途徑(Intercellular Route) 10 第四節 經皮滲透原理 10 第五節 促進藥物滲透 15 第六節 水合作用 17 第七節 藥品性質與用途 19 一、 水楊酸(Salicylate, SA) 19 二、 苯甲酸(Benzoic acid, BA) 19 三、 間-苯二酚(Resorcinol, RE) 19 四、 5-氟尿嘧啶(5-fluorouracil, FL) 19 第三章 實驗方法與材料 21 第一節 實驗方法 21 一、 48小時-檢測水合作用對有效滲透係數影響之實驗 21 二、 12小時皮膚熱處理之實驗 21 第二節 皮膚樣品製備 24 一、 豬皮樣品(porcine skin) 24 二、 小鼠皮膚樣品(mouse skin) 24 第三節 經皮滲透實驗步驟 25 一、 Franz Diffusion Cell (FDC) 25 二、 取樣 25 第四節 HPLC定量方法 26 一、 器配備及設定參數 26 二、 操作步驟: 27 三、 分析條件 27 第五節 數值模型分析擬合程式 30 第六節 最小平方和法 33 第七節 實驗藥品 33 第八節 實驗儀器 34 第四章 實驗結果 35 第一節 標準曲線 35 第二節 分析方法之精密度 37 一、 水楊酸同日間與異日間之精密度: 37 二、 5-氟尿嘧啶同日間與異日間之精密度: 38 三、 苯甲酸同日間與異日間之精密度: 38 四、 間-苯二酚同日間與異日間之精密度: 39 第三節 藥品累積滲透量 39 一、 48小時經皮滲透實驗數據 39 二、 間-苯二酚以及水楊酸於正常鼠皮與熱處理鼠皮之經皮滲透實驗 52 第四節 多區間擬合之數值模型模擬 57 一、 最小誤差平方和法與平移時間常數 57 二、 數值模擬結果 59 第五節 鼠皮滲透實驗之有效滲透係數定量 64 一、定量方法 64 二、定量結果 65 第五章 討論 68 第一節 藥物之有效滲透係數 68 一、 藉由QSPRs比較有效滲透係數 68 二、 探討熱處理對角質層阻抗之影響 70 第二節 有效滲透係數於水合條件之探討 71 第三節 定量方法 75 第六章 結論與未來展望 78 第七章 參考文獻 79 附錄 84zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201015401000en_US
dc.subjecthydrationen_US
dc.subject水合作用zh_TW
dc.subjectheat treatmenten_US
dc.subjecteffective permeabilityen_US
dc.subject熱處理zh_TW
dc.subject有效滲透係數zh_TW
dc.title角質層的水合作用對藥物經皮傳遞之研究zh_TW
dc.titleThe Effect of Stratum Corneum Hydration on Transdermal Drug Delivery Processen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.