Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLin, Ta-Chiangen_US
dc.identifier.citation1. Jen AC, W.M., Mikos AG, Hydrogels for cell immobilization. Macromolecules, 1996. 50: p. 357-364. 2. K., A., Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab, 2000. 20(10): p. 1393-1408. 3. Cao Q, B.R., Whittemore SR. , Stem cell repair of central nervous system injury. J Neurosci Res, 2002. 68(5): p. 501-510. 4. Zhong Y, B.R., Biomaterials for the central nervous system. J R Soc Interface, 2008. 5. Li C, V.C., Jin HJ, Kim HJ, Kaplan DL . , Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006. 27(16): p. 3115-3124. 6. Richmon JD, S.A., Shelton E, Schumacher BL, Sah RL, Watson D. , Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer. Laryngoscope, 2005. 115(9): p. 1553-1560. 7. Schumacher B, P.P., von Specht BU, Stegmann T. , Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation, 1998. 97(7): p. 645-650. 8. Whalen GF, S.Y., Folkman J. , The fate of intravenously administered bFGF and the effect of heparin. Growth Factors, 1989. 1(2): p. 157-164. 9. Mazue G, N.A., Scampini G, Della TP, Hard GC, Iatropoulos MJ et al. , The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol Pathol, 1993. 21(5): p. 490-501. 10. de VP, F.M., Strand B, Calafiore R. , Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials, 2006. 27(32): p. 5603-5617. 11. Yasuhara T, B.C., Date I. Ex vivo gene therapy: transplantation of neurotrophic factor-secreting cells for cerebral ischemia. . Front Biosci ;, 2006. 11: p. 760-775. 12. Gunzburg WH, S.B., Use of cell therapy as a means of targeting chemotherapy to inoperable pancreatic cancer. Acta Biochim Pol, 2005. 52(3): p. 601-607. 13. Lutolf MP, H.J., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol, 2005. 23(1): p. 47-55. 14. JA., H., Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release, 1996. 39: p. 305-313. 15. A.Martinsen, G.S.-B., O.Smidsrod. , Alginate as immobilization material. I. Correlation between chemical and physical properties of alginate gel breads. Biotechnology and Bioengineering, 1989. 33: p. 79-89. 16. A.Martinsen., Alginate as immobilization material Ⅲ.Diffusional Properties. Biotechnology and Bioengineering 1992. 39: p. 186-194. 17. Amsden B., N.T., Diffusion characteristics of calcium alginate gels. Biotechnology and Bioengineering 1999. 65: p. 605-610. 18. Shapiro L, C.S., Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997. 18(8): p. 583-590. 19. Atala A, K.C., Applications of tissue engineering in the genitourinary tract. Expert Rev Med Devices, 2005. 2(1): p. 119-126. 20. Beris AE, L.M., Papageorgiou CD, Georgoulis AD, Advances in articular cartilage repair. Injury, 2005. 36(4): p. 14-23. 21. Guo JF, J.G., MacCallum DK. , Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res, 1989. 19(2-4): p. 277-297. 22. Smidsrod O, S.-B.G., Alginate as immobilization matrix for cells. Trends Biotechnol 1990. 8(3): p. 71-78. 23. Paige KT, C.L., Yaremchuk MJ, Schloo BL, Vacanti JP, Vacanti CA. , De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg, 1996. 97(1): p. 168-178. 24. Soon-Shiong P, H.R., Merideth N, Yao QX, Yao Z, Zheng T et al. , Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet, 1994. 343(8903): p. 950-951 25. Fritschy WM, W.G., van SR. , Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 1991. 40(1): p. 37-43. 26. King A, S.S., Andersson A, Hellerstrom C, Kulseng B, Skjak-Braek G., Glucose metabolism in vitro of cultured and transplanted mouse pancreatic islets microencapsulated by means of a high-voltage electrostatic field. Diabetes Care, 1999. 27. de Haan BJ, F.M., de VP. , Factors influencing insulin secretion from encapsulated islets. Cell Transplant, 2003. 12(6): p. 617-625. 28. Klock G, P.A., Ryser C, Grohn P, Kuttler B, Hahn HJ et al. , Biocompatibility of mannuronic acid-rich alginates. Biomaterials, 1997. 18(10): p. 707-713. 29. Lim F, S.A., Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980. 210(4472): p. 908-910. 30. Omer A, D.-K.V., Trivedi N, Wilmot K, Bonner-Weir S, Weir GC. , Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice. Diabetes, 2003. 52(1): p. 69-75. 31. Zimmermann H, Z.D., Reuss R, Feilen PJ, Manz B, Katsen A et al. , owards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. T. J Mater Sci Mater Med, 2005. 16(6): p. 491-501. 32. TM., C., Pharmaceutical and therapeutic applications of artificial cells including microencapsulation. Eur J Pharm Biopharm, 1998. 45(1): p. 3-8 33. Joly A, D.J., Fremond B, Desille M, Campion JP, Malledant Y et al. , Survival, proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads: a step toward a reliable bioartificial liver. Transplantation, 1997. 63(6): p. 795-803. 34. Haque T, C.H., Ouyang W, Martoni C, Lawuyi B, Urbanska AM et al., In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett 2005. 27(5): p. 317-322. 35. Ringel M, v.M.M., Santos R, Feilen PJ, Brulport M, Hermes M et al. , Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction. Toxicology, 2005. 206(1): p. 153-167. 36. Mai G, H.N., Morel P, Mei J, Bosco D, Berney T et al. , Treatment of fulminant liver failure by transplantation of microencapsulated primary or immortalized xenogeneic hepatocytes. Transplant Proc, 2005. 37(1): p. 527-529. 37. Chubinskaya S, H.K., Schulze M, Otten L, Aydelotte MB, Cole AA. , Gene expression by human articular chondrocytes cultured in alginate beads. J Histochem Cytochem, 2001. 49(10): p. 1211-1220. 38. Chang, J.C., S.H. Hsu, and D.C. Chen, The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials, 2009. 30(31): p. 6265-6275. 39. Halle, J.P., et al., Method for the Quantification of Alginate in Microcapsules. Cell Transplantation, 1993. 2(5): p. 429-436. 40. Hsu, Y.C., et al., Brain-Specific 1B Promoter of FGF1 Gene Facilitates the Isolation of Neural Stem/Progenitor Cells With Self-Renewal and Multipotent Capacities. Developmental Dynamics, 2009. 238(2): p. 302-314. 41. Matsumoto S, K.H., Takashima Y., Production of monodispersed capsules. J Microencapsul, 1986. 3(1): p. 25-31. 42. Bowersock TL, H.H., Suckow M, Guimond P, Martin S, Borie D et al. , Oral vaccination of animals with antigens encapsulated in alginate microspheres. Vaccine, 1999. 17(13-14): p. 1804-1811. 43. De VP, D.H., Pater J, Van SR., Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation, 1996. 62(7): p. 893-899. 44. Robitaille R, P.J., Leblond FA, Lamoureux M, Lepage Y, Halle JP. , Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. III. Biocompatibility Of smaller versus standard microcapsules. J Biomed Mater Res A, 1999. 44(1): p. 116-120. 45. Lin, H.J., et al., Neural stem cell differentiation in a cell-collagen-bioreactor culture system. Developmental Brain Research, 2004. 153(2): p. 163-173. 46. Huang, S.-B., M.-H. Wu, and G.-B. Lee, Microfluidic device utilizing pneumatic micro-vibrators to generate alginate microbeads for microencapsulation of cells. Sensors and Actuators B: Chemical. 147(2): p. 755-764. 47. Sugiura S, O.T., Izumida Y, Aoyagi Y, Satake M, Ochiai A et al., Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials, 2005. 26(16): p. 3327-3331. 48. Serp D, C.E., Heinzen C, Von SU, Marison IW. , Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 2000. 70(1): p. 41-53. 49. Schwinger C, K.S., Jahnz U, Wittlich P, Rainov NG, Kressler J. , High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. J Microencapsul. 19(3): p. 273-280. 50. Sugiura S, O.T., Aoyagi Y, Matsuo R, Enomoto T, Matsumoto K et al. , Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules. . Biomed Microdevices 2007. 9(1): p. 91-99. 51. Li X, L.T., Song K, Yao L, Ge D, Bao C et al. , Culture of neural stem cells in calcium alginate beads. Biotechnol Prog, 2006. 22(6): p. 1683-1689. 52. Niles, L.P., et al., Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. Bmc Neuroscience, 2004. 5.zh_TW
dc.description.abstract本研究是以生物可降解材料-褐藻膠做為基材,以導流針、震動馬達、高頻率撞針系統三種方法去製作微球體,並於製程中包覆神經幹細胞,改善噴霧法包覆效率不高的問題後討論神經幹細胞在微球體內部的生長與活性維持,並分析其基因表現。經過五天的培養後,其神經幹細胞增生率約為140%,之後細胞數約為定值。在生化功能部分,神經生長因子等的基因表現,初期 (3天、5天)相較培養於平面時的表現為佳,而到達較長時間 (14天)時,則發現細胞有聚集的情形,且GFAP表現變強,推測為不同M/G比例與流變儀測出的不同硬度的褐藻膠會對包覆的神經幹細胞有不同的分化效果。zh_TW
dc.description.abstractAlginate microspheres were fabricated into microspheres in this study. By three special devices designed in-house, we were able to encapsulate the neural stem cells in calcium chloride crosslinked alginate microspheres. The efficiency of encapsulation could reach about 98%. Neural stem cells transfected by promoter F1B-green fluorescence protein (F1B-GFP reporter) plasmid showed green fluorescence expression in alginate microspheres, indicated that they were undifferentiated and alive. The cell number in alginate microspheres increased 1.4 times after 5 days. The expression level of neurotrophic genes was higher for cells cultured in alginate microspheres than that on TCPS at 3 and 5 days. 3D culture in alginate microspheres promoted the GFAP gene expression at 14 days. The tendency was more pronounced in softer alginate microspheres.en_US
dc.description.tableofcontents致謝 I 摘要 II Abstract III 圖目錄 VI 表目錄 VIII 第一章 文獻回顧 1 1.1神經系統網路 1 1.2周邊神經系統 1 1.3神經疾病與創傷治療之缺點 2 1.3.1細胞治療 2 1.3.2生長因子治療 2 1.4.細胞治療 3 1.5研究目標 8 第二章 實驗流程與方法 9 2.1 實驗架構 9 2.2 藥品材料 10 2.2.1 褐藻膠溶液 10 2.2.2 磷酸緩衝溶液溶液 10 2.2.3 檸檬酸鈉溶液 10 2.2.4 林格試劑 10 2.3 神經幹細胞載體-微球體 11 2.3.1 微球體製備 11 2.3.2 微球體型態觀察與粒徑分析 13 2.3.3 微粒球水膠流變性質 13 2.3.4 微粒球體外降解測試 14 2.3.5 體外神經幹細胞培養 15 2.3.6 神經幹細胞螢光觀察 15 2.3.7 包覆細胞之微球體製備 16 2.3.8 微球體細胞包覆率測試 16 2.3.9 體外微球體內細胞增生實驗 16 2.3.10 神經幹細胞生化功能測試 17 第三章 實驗結果 21 3.1 神經幹細胞於微球體作體外培養 21 3.1.1 微球體製備 21 3.1.2 微球體型態及包覆細胞效率 21 3.1.3微球體與神經幹細胞的生長增殖 22 3.2 褐藻膠性質分析 22 3.2.1 褐藻膠流變性質 22 3.2.2 褐藻膠於模擬體液中降解速率 23 3.3 神經幹細胞螢光表現與基因表現 23 第四章 結果討論 24 4.1 微粒球製作 24 4.2 褐藻膠性質分析 25 4.3 細胞培養於微粒球 26 第五章 結論 28 文獻資料 29 Appendix 附件 43 A.1使用藥品 43 A.1.1寡幾丁聚醣溶液 43 A.1.2 聚麩胺酸溶液 43 A.1.3 小牛血清白蛋白 43 A.1.4 酸性纖維母細胞生長因子溶液 43 A.2 奈米粒製作方法 44 A.2.1 製作原理 44 A.2.2 NPs性質 44 A.3 實驗結果 45 A.4 結果討論 45zh_TW
dc.subjectneural stem cellsen_US
dc.subjectneurotrophic factorsen_US
dc.subjectnerve differentiationen_US
dc.titleThe Behavior of Neural Stem Cells in Alginate Microspheresen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.