Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3839
標題: 聚乳酸奈米複合材料製備與物性分析
Preparation and Physical Properties of Poly(Lactic Acid) Nanocomposites
作者: 楊慧真
Yang, Hui-Chen
關鍵字: Poly(Lactic Acid);聚乳酸
出版社: 化學工程學系所
引用: 1. 楊斌,“綠色塑料聚乳酸”, 化學工業出版社, 北京, 第 2頁 (2007) 2. 王姿雅,“交聯型聚琥珀酸丁酯奈米複合材料之探討”, 國立中興大學化學工程研究所碩士論文 (2006) 3. 林承謨,“生物可分解性塑膠”, 美國飼料穀物協會, 第1頁 (1997) 4. Ajay, M.; Vipul, D.; Richard, A. Polymer, 37,437-444 (1996) 5. 王國全, “聚合物共混改性原裡與應用”, 中國輕工業出版社, 北 京, 第198頁 (2008) 6. Lin, J.; Junaid, A.; Siddiqui; Raphael, M., Polymer for Advanced Technologie,12, 285-292 (2001) 7. Li, Y.; Yu, J.; Guo, Z. X.; Journal of Applied Polymer Science, 84, 827–834 (2002) 8. Yan, S.; Yin, J.; Yang, J.; Chen, X., Materials Letters, 61, 2683–2686 (2007) 9. Yan, S.; Yin, J.; Yang, J.; Chen, X., Polymer, 48, 1688-1694 (2007) 10. Wu, L.; Cao, D.; Huang, Y.; Li, B. G., Polymer, 49, 742-748 (2008) 11. 洪永璋, “聚乳酸二氧化矽奈米複合材料的製備與特性之研究”, 國立成功大學化學工程研究所碩士論文 (2008) 12. Wen, X.; Lin, Y.; Han, C.; Zhang, K.; Ran, X.; Li, Y.;Dong, L.,Journal of Applied Polymer Science, 114, 3379–3388 (2009) 13. 陳重任, “以改質二氧化矽奈米顆粒韌化聚乳酸生質高分子材料 之研究”, 國立宜蘭大學化學工程與材料工程系研究所碩士論文(2009) 14. Ray, S. S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K., Macro- molecules, 35, 3104-3110 (2002) 15. Ray, S. S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K., Journal of Nanoscience and Nanotechnology, 3, 1-8 (2003) 16. Changa, J. H.; Ana, Y. U.; Choa, D.; Emmanuel, P., Polymer, 44, 3715–3720 (2003) 17. Krikorian, V.; Pochan, D. J., Chemistry of Materials, 15, 4317-4324 (2003) 18. Chen, G. X.; Choi, J. B.; Yoon, J. S., Department of Polymer Science and Engineering, 38, 183–187 (2005) 19. Chen, G. X.; Choi, J. B.; Yoon, J. S., Macromolecules, 38, 3738- 3744 (2005) 20. Di, Y.; Iannace, S.;Maio, E. D.; Nicolais, L., Journal of Polymer Science: Part B: Polymer Physics, 43, 689–698 (2005) 21. Wu, T. M.; Chiang, M. F., Polymer Engineering and Science;1615- 1621 (2005) 22. Wu, T. M.; Wu, C. Y., Polymer Degradation and Stability, 91, 2198- 2204 (2006) 23. Petersson, L.; Oksman, K.; Mathew, A. P., Journal of Applied Polymer Science, 102, 1852–1862 (2006) 24. Pluta, M.; Paul, M. A.; Alexandre, M.; Dubols, P., Journal of Polymer Science: Part B: Polymer Physics, 44, 299-311 (2006) 25. Pluta, M.; Jeszka, J. K.; Boiteux, G., European Polymer Journal, 43 2819–2835 (2007) 26. Chow, W. S.; Lok, S. K. , Journal of Thermal Analysis and Calorimetry, 95, 2627–2632 (2009) 27. 黃登科, “層狀材/聚乳酸奈米複合材料的製備與其性質研究”, 國立成功大學化學工程研究所碩士論文 (2009) 28. Wu, C. S.; Liao, H. T., Polymer, 48, 4449-4458 (2007) 29. Chiu, W. M.; Chang, Y. A.; Kuo, H. Y.; Lin, M. H. ; Wen, H. C., Journal of Applied Polymer Science, 108, 3024–3030 (2008) 30. Kuan, C. F; Kuana, H. C.; Chen, C. M.; Chena, C. H., Journal of Physics and Chemistry of Solids, 69, 1395–1398 (2008) 31. Ramontja, J.; Ray, S. S.; Srjarani, K.; Pillai, Macromolecules, 839 –84 6 (2009) 32. Lin, J.; Junid A.; Raphael M., Polymers for Advanced Technologies, 12, 285-292 (2001) 33. Bernt B.; Kjell O.; Aage S., International Journal of Adhesion& Adhesives, 23,155-163 (2003) 34. 葉佳炘, “聚對苯二甲酸/二氧化矽奈米複合材料之製備與物性分 析”, 國立中興大學化學工程研究所碩士論文 (2005) 35. Stoog, D. A.; Holler, F. J.; Nieman, T. A., “Principles of Instrumental Analysis”,5th Edition, P.300 (1998) 36. 江明峰, “聚乳酸/蒙脫土奈米複合材料之製備與物性研究”, 國立 中興大學材料工程研究所碩士論文 (2005) 37. Bao, S. P.; Tjong S. C., Composites: Part A, 38, 378–387 (2007) 38. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J., Macromolecules, 41, 1352 (2008) 39. Chiu, W. M.; Chang, Y. A.; Kuo, H. Y.; Lin, M. H.; Wen, H. C., Journal of Applied Polymer Science, 108, 3024–3030 (2008) 40. Sawai D.; Higuchi N.; Kanamoto T., Macromolecules, 63, 315-323 (2007) 41. Leno D.; Manuel A.; Thei K.; James E.; Betty L., Polymer Engineering and Science, 10, 866-874 (2009) 42. Anoop K.; Sunil T.; Rosamma A.; Rani J., International Journal of Polymeric Materials, 59, 33–44 (2010)
摘要: 
本研究以生物相容性之聚乳酸為主體,但聚乳酸因較慢結晶速率導致耐熱性差是目前在應用上為主要限制。實驗的目的在於探討聚乳酸加入在不同的填充料之複材性質比較,加入純二氧化矽、Glycidyloxypropyl trimethoxysilane( GPS ) 改質二氧化矽、黏土Cloisite15A、改質黏土和多壁奈米碳管,都可強化聚乳酸其機械性質與熱性質;並在聚乳酸/二氧化矽系統和聚乳酸/碳管系統加入相容劑幫助分散,尤其加入碳管後可使聚乳酸具有導電高分子之生物可分解材料。
將聚乳酸分別和純二氧化矽、GPS改質二氧化矽、黏土Cloisite15A與改質黏土和碳管,利用熔融混煉法製備奈米複材,機械性質由DMA後所得到之結果顯示,聚乳酸在30℃儲存模數(E’)為1.48×109 Pa,複材之儲存模數(E’)均隨著純二氧化矽、GPS改質二氧化矽、黏土Cloisite15A、改質黏土、碳管含量增加而增加,以相同含量5.0 phr無機物來比較,其碳管增加至1.92×109 Pa為最好,其次為Cloisite 15A增加至1.88×109 Pa,改質二氧化矽增加至1.87×109 Pa,純二氧化矽增加至1.84×109 Pa,改質黏土增加至1.66×109 Pa。
在熱性質上由DSC分析結果看出加入純二氧化矽、GPS改質二氧化矽、黏土Cloisite15A、改質黏土和碳管都會讓結晶度提高,有效提高聚乳酸的結晶度。其聚乳酸結晶度為2.2 %,以相同含量5.0 phr無機物來比較, 碳管增加至30.5 %為最好,其次Cloisite 15A增加至25.9 %,改質黏土增加至25.5 %,改質二氧化矽增加至10.9 %,純二氧化矽增加至9.22 %。都因異相成核促使結晶,有效提升聚乳酸的耐熱性。且結晶度的高低和儲存模數(E’)是一致的,因為結晶儲存模數(E’)遠大於不定形儲存模數(E’),有聚乳酸結晶的加成作用所致。並且添加純二氧化矽、GPS改質二氧化矽,經過退火處理之後誘導PLA結晶,以相同含量5.0 phr無機物來比較,GPS改質二氧化矽增加至46.6 %、純二氧化矽增加至38.3 %。
純聚乳酸的電阻率為2.3×1014 Ω‧cm,隨著碳管含量加入越多,其導電率有明顯隨之提昇,當加入碳管含量為5.0 phr,其電阻率降至8.03×105 Ω‧cm。

This research used Poly-Lactic Acid as the main material due to its fine biocompatibility. However, the differences in heat resistance due to the slower crystallization rate of Poly-Lactic Acid is the major limit on application now. The purpose of this research was to probe into the different fillers by adding in Poly-Lactic Acid, adding SiO2, Glycidyloxypropyl trimethoxysilane ( GPS ) modified SiO2 , montmorillonite Cloisite15A , modified clay, and the multi-walled carbon nanotube. The addition of all these materials were all capable to enhance the mechanical properties and thermal properties of Poly-Lactic Acid. For the Poly-Lactic Acid/SiO2 nanocomposites and Poly-Lactic Acid /carbon nanotube nanocomposites, compatibilizers were used to enhance the dispersion, and especially adding carbon nanotube will enable Poly-Lactic Acid to provide with electrical conductivity to biodegradable materials.
Nanocomposites had been prepared from Poly-Lactic Acid separately with SiO2 , GPS modified SiO2, montmorillonite Cloisite15A, modified clay, and carbon nanotubes by melt blending. The mechanical properties analyzed by DMA show that the storage modulus (E') of Poly-Lactic Acid at the room temperature of 30 ℃was 1.48×109 Pa. However, the storage modulus (E') of the composites had all increased after adding the content of either GPS modified SiO2 or not, montmorillonite Cloisite15A,modified clay, and carbon nanotubes. Comparisons with the same contents of 5.0 phr inorganic materials showed that carbon nanotubes with the storage modulus (E') increases to 1.92×109 Pa ,while Cloisite15A to 1.88×109 Pa, GPS modified SiO2 to 1.87×109 Pa , SiO2 to1.84×109 Pa, and modified clay to 1.66×109 Pa. The results of the thermal properties through the analysis of DSC, the results showed that SiO2 , GPS modified SiO2, montmorillonite Cloisite15A,modified clay, carbon nanotubes could increase efficiently the crystalline degree of Poly-Lactic Acid . The crystalline degree of Poly-Lactic Acid is 2.2 %, by comparing with the same 5.0 phr contents of inorganic materials, carbon nanotubes increased to 30.5 % were best, while Cloisite15A to 25.9 %, modified clay to 25.5 %, GPS modified SiO2 to 10.9 %,and SiO2 to 9.22 %.
All nucleating agents had been found to enhance the heat resistance of Poly-Lactic Acid . The addition of Poly-Lactic Acid crystals could result in the correspondence of the crystalline degrees of composites with the respective storage modulus (E'). This was because the crystal storage modulus (E') was a lot greater than the respective amorphous storage modulus (E'). Moreover, the addition of either with or without GPS modified SiO2 after the annealing process to induce Poly-Lactic Acid to make integrated crystals when compared with the same 5.0 phr content of inorganic compounds, GPS modified SiO2 increased to 46.6 % and SiO2 to 38.3 % .
The resistance of Poly-Lactic Acid is 2.3×1014 Ω‧cm, electrical conductivity of the composites increase after adding carbon nanotube, adding 5.0 phr contents of carbon nanotubes, while the resistance of the composites decrease to 8.03×105 Ω‧cm.
URI: http://hdl.handle.net/11455/3839
其他識別: U0005-2208201001111700
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.