Please use this identifier to cite or link to this item:
標題: 以Michaelis-Menten機制模擬軸突內物質的主動傳輸
A Simulation Study on Active Transport of Biomolecules in Axons Using the Michaelis-Menten Mechanism
作者: 林義珉
Lin, I-Ming
關鍵字: microtubule;微小管;molecular motor;active transport;axon;分子馬達;主動傳輸;軸突
出版社: 化學工程學系所
引用: [1]. R. Bird, W. Stewart, and E. Lightfoot, Transport phenomena. (2002). [2]. A. Brown, Slow axonal transport: stop and go traffic in the axon. Nature Reviews Molecular Cell Biology 1 (2000) 153-156. [3]. A. Brown, Axonal transport of membranous and nonmembranous cargoes: a unified perspective. Journal of Cell Biology 160 (2003) 817. [4]. A. Brown, L. Wang, and P. Jung, Stochastic simulation of neurofilament transport in axons: the ?stop-and-go” hypothesis. Molecular Biology of the Cell 16 (2005) 4243-4255. [5]. R. Burden, and J. Faires, Numerical Analysis. (2001). [6]. E. Chevalier-Larsen, and E. Holzbaur, Axonal transport and neurodegenerative disease. BBA-Molecular Basis of Disease 1762 (2006) 1094-1108. [7]. D. Coy, M. Wagenbach, and J. Howard, Kinesin takes one 8-nm step for each ATP that it hydrolyzes. Journal of Biological Chemistry 274 (1999) 3667. [8]. G. Craciun, A. Brown, and A. Friedman, A dynamical system model of neurofilament transport in axons. Journal of Theoretical Biology 237 (2005) 316-322. [9]. E. De La Cruz, H. Sweeney, and E. Ostap, ADP inhibition of myosin V ATPase activity. Biophysical Journal 79 (2000) 1524-1529. [10]. K. De Vos, A. Grierson, S. Ackerley, and C. Miller, Role of Axonal Transport in Neurodegenerative Diseases. Annual Review of Neuroscience 31 (2008). [11]. A. Dinh, T. Theofanous, and S. Mitragotri, A model for intracellular trafficking of adenoviral vectors. Biophysical Journal 89 (2005) 1574-1588. [12]. A. Dinh, C. Pangarkar, T. Theofanous, and S. Mitragotri, Theory of Spatial Patterns of Intracellular Organelles. Biophysical Journal 90 (2006) 67-69. [13]. A. Dinh, T. Theofanous, and S. Mitragotri, Modeling of pattern regulation in melanophores. Journal of Theoretical Biology 244 (2007) 141-153. [14]. M. Fisher, and A. Kolomeisky, Simple mechanochemistry describes the dynamics of kinesin molecules. Proceedings of the National Academy of Sciences 98 (2001) 7748. [15]. A. Gennerich, and R. Vale, Walking the walk: how kinesin and dynein coordinate their steps. Current Opinion in Cell Biology 21 (2009) 59-67. [16]. D. Hackney, Kinesin ATPase: rate-limiting ADP release. Proc. Natl. Acad. Sci. USA 85 (1988) 6314-6318. [17]. D. Hackney, The rate-limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. Journal of Biological Chemistry 269 (1994) 16508. [18]. P. Hollenbeck, The pattern and mechanism of mitochondrial transport in axons. Front. Biosci 1 (1996) d91-d102. [19]. P.J. Hollenbeck, and W.M. Saxton, The axonal transport of mitochondria. J Cell Sci 118 (2005) 5411-5419. [20]. E. Holzbaur, and K. Johnson, ADP release is rate limiting in steady state turnover by the dynein adenosinetriphosphatase. Biochemistry 28 (1989a) 5577-5585. [21]. E. Holzbaur, and K. Johnson, Microtubules accelerate ADP release by dynein. Biochemistry 28 (1989b) 7010-7016. [22]. E. Holzbaur, Axonal transport and neurodegenerative disease. Intracellular Traffic and Neurodegenerative Disorders (2009) 27-39. [23]. K. Hooman, A. Ejlali, and M. Abdel-Jawad, Hydrodynamic modeling of traffic jams in intracellular transport in axons. International Communications in Heat and Mass Transfer 36 (2009) 329-334. [24]. J. Howard, A.J. Hudspeth, and R.D. Vale, Movement of microtubules by single kinesin molecules. Nature 342 (1989) 154-158. [25]. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton. (2001). [26]. M. Hubley, B. Locke, and T. Moerland, The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. BBA-General Subjects 1291 (1996) 115-121. [27]. P. Jung, and A. Brown, Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Physical Biology 6 (2009) 046002. [28]. W. Junge, ATP synthase and other motor proteins, National Acad Sciences, 1999, pp. 4735-4737. [29]. A. Kuznetsov, and K. Hooman, Modeling traffic jams in intracellular transport in axons. International Journal of Heat and Mass Transfer 51 (2008a) 5695-5699. [30]. A. Kuznetsov, and A. Avramenko, A minimal hydrodynamic model for a traffic jam in an axon. International Communications in Heat and Mass Transfer (2008b). [31]. A. Kuznetsov, and A. Avramenko, A macroscopic model of traffic jams in axons. Mathematical Biosciences 218 (2009) 142-152. [32]. H. Lodish, and A. Berk, Molecular cell biology. 2008. [33]. R. Mallik, B. Carter, S. Lex, S. King, and S. Gross, Cytoplasmic dynein functions as a gear in response to load. Nature 427 (2004) 649-652. [34]. J. Motil, M. Dubey, W. Chan, and T. Shea, Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites. Brain research 1164 (2007) 125-131. [35]. M. Moyer, S. Gilbert, and K. Johnson, Pathway of ATP Hydrolysis by Monomeric and Dimeric Kinesin. Biochemistry 37 (1998) 800-813. [36]. M. Nishiyama, H. Higuchi, and T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nature cell biology 4 (2002) 790-797. [37]. Z. Okten, L. Churchman, R. Rock, and J. Spudich, Myosin VI walks hand-over-hand along actin. Nature structural & molecular biology 11 (2004) 884-887. [38]. S. Roy, B. Zhang, V. Lee, and J. Trojanowski, Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathologica 109 (2005) 5-13. [39]. W. Schief, and J. Howard, Conformational changes during kinesin motility. Current Opinion in Cell Biology 13 (2001) 19-28. [40]. W. Schief, R. Clark, A. Crevenna, and J. Howard, Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proceedings of the National Academy of Sciences 101 (2004) 1183. [41]. M. Schliwa, Molecular motors. (2002) [42]. M. Schliwa, and G. Woehlke, Molecular motors. Nature 422 (2003) 759-765. [43]. M. Schnitzer, and S. Block, Kinesin hydrolyses one ATP per 8-nm step. Nature 388 (1997) 386-390. [44]. T. Shea, and W. Beaty, Traffic Jams: Dynamic Models for Neurofilament Accumulation in Motor Neuron Disease. Traffic 8 (2007) 445-447. [45]. D.A. Smith, and R.M. Simmons, Models of Motor-Assisted Transport of Intracellular Particles. Biophysical Journal 80 (2001) 45-68. [46]. J. Spudich, The myosin swinging cross-bridge model. Nature Reviews Molecular Cell Biology 2 (2001) 387-392. [47]. R. Stowers, L. Megeath, J. Gorska-Andrzejak, I. Meinertzhagen, and T. Schwarz, Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36 (2002) 1063-1077. [48]. S. Toba, T. Watanabe, L. Yamaguchi-Okimoto, Y. Toyoshima, and H. Higuchi, Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein, National Acad Sciences, 2006. [49]. D. Tsygankov, A. Serohijos, N. Dokholyan, and T. Elston, Kinetic models for the coordinated stepping of cytoplasmic dynein. The Journal of Chemical Physics 130 (2009) 025101. [50]. M.A. Welte, Bidirectional Transport along Microtubules. Current Biology 14 (2004) R525-R537. [51]. A. Yildiz, M. Tomishige, R. Vale, and P. Selvin, Kinesin walks hand-over-hand. Science 303 (2004) 676. [52]. A. Yildiz, and P. Selvin, Kinesin: walking, crawling or sliding along? Trends in Cell Biology 15 (2005) 112-120. [53]. M. Yoshida, E. Muneyuki, and T. Hisabori, ATP synthase? a marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology 2 (2001) 669-677. [54]. 壽天德, 神經生物學, 九州圖書文物有限公司, 2003
在神經細胞中,因為軸突的特殊性,所以物質的傳遞是維持機能的一個重要機制,例如一些神經退化性疾病的病症中會發現軸突澎潤或球體的形成,被認為與軸突傳輸有相當深切的關係。神經細胞軸突中物質輸送共分為兩種,一種是小分子以布朗運動的方式在軸突裡自由的移動,如ATP在軸突裡的輸送;另一種則是物質與一種稱為分子馬達的馬達蛋白結合,馬達蛋白利用ATP水解所產生的能量,拖曳物質沿者細胞骨架移動,稱為軸突輸送,例如神經傳送物質、細胞骨架聚合物等等。由Smith和 Simmons所提出的數學模是假設粒子的速度是穩定的。與先前文獻的模式比較,本研究將額外增加一個ATP的連續方程式,此方程式是描述ATP濃度的分布,且利用Michaelis - Menten動力學來推導馬達蛋白的速度,藉此使巨觀的軸突傳輸系統朝向更真實的方向前進。本研究將會呈現抑制驅動蛋白、抑制細胞質動力蛋白和沒有抑制馬達蛋白所呈現的粒子分布狀態,最後並與文獻做比較。

Intracellular transport is an important mechanism to maintain neural function because of axonal specificity. For example, we found axonal swelling or the formation of spheroid in neurodegenerative diseases, and axonal transport is considered the important factor for neurodegenerative diseases. Axonal transport of biomass is divided into two in neuron. The former is that small molecules diffuse freely in the axon, such as the transport of ATP in cells. The latter is that cargo (organelles or viscles) associated with motor proteins. Motor proteins use the energy generated by ATP hydrolysis, and drag cargo along the cytoskeleton movement. It is called axonal transport, such as neurotransmitter, cytoskeletal polymers and so on. Mathematical model proposed by Smith and Simmons assumes that the velocity of particles is constant. Compared with the previous model, this study adds the continuity equation for species ATP to describe the distribution of ATP concentration, and uses Michaelis-Menten kinetics to derive the velocity of the motor protein. This study simulates distribution of the particles due to the inhibition of kinesin, inhibition of dynein and both. Results are compared with the literatures.
其他識別: U0005-2308201016273800
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.