Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3845
標題: 多層壁奈米碳管/幾丁聚醣複合薄膜作為電化學DNA感測器之探討
Electrochemical DNA sensors based on multiwalled carbon nanotubes/chitosan composite film
作者: 詹筱翎
Chan, Hsiao-Ling
關鍵字: DNA sensor;DNA感測器;carbon nanotube;chitosan;奈米碳管;幾丁聚醣
出版社: 化學工程學系所
引用: [1] X.D. Su, R. Robelek, Y.J. Wu, G.Y. Wang, W. Knoll, Anal. Chem. 76 (2004) 489–494. [2] X.C. Zhou, L.Q. Huang, S. F. Y. Li, Biosensors & Bioelectronics 16 (2001) 85–95. [3] X.J. Zhao, R. Tapec-Dytioco, W.H. Tan, J. Am. Chem. Soc. 125 (2003) 11474–11475. [4] H.B. Sun, H. Yokota, Anal. Chem. 72 (2000) 3138–3141. [5] A. Castro, D.A.R. Dalvit, L. Paz-matos, Anal. Chem. 76 (2004) 4169–4174. [6] X. Sua, Y.J. Wu , W. Knoll, Biosensors and Bioelectronics 21 (2005) 719–726 [7] N. Zhu, Z. Chang, P. He, Y. Fang, Anal. Chem.Acta. 545 (2005) 21-26. [8] M. K. Patel, P. R. Solanki, S. Seth, S. Gupta, S. Khare, A. Kumar, B.D. Malhotra, Electrochemistry Communications 11 (2009) 969–973. [9] Y. Feng, T. Yang, W. Zhang, C. Jiang, K. Jiao, analytica chimica acta 6 1 6 ( 2 0 0 8 ) 144–151. [10] C. Jiang, T. Yang, K. Jiao, H. Gao, Electrochimica Acta 53 (2008) 2917–2924. [11] Y. C. Tsai, S. Y. Chen, H. W. Liaw, Sensors and Actuators B 125 (2007) 474–481. [12] S. Iijima, Nature, 354, 56, 1991. [13] Y.C. Tsai, S.Y. Chen, C.A. Lee, Sens. Actuators, B 138 (2009) 518–523 [14] Y.C. Tsai, S.Y. Chen, C. A. Lee, Sens. Actuators, B 135 (2008) 96–101 [15] http://en.wikipedia.org/wiki/DNA [16] Y. Yang, Z. Wang, M. Yang, J. Li, F. Zheng, G. Shen, R. Yu, Analytica Chimica Acta 584 (2007) 268-274. [17] N. Zhu, Z. Chang, P. He, Y. Fang, Analytica Chimica Acta 545 (2005) 21-26. [18] B.R. Eggins, Chemical Sensors and Biosensors, Wiley, New York, 2002. [19] J. Shah, E. Wilkins, Electroanalysis, 15, 157, 2002. [20] D. L. Polla, L. F. Francis, MRS Bulletin, 59, 1996. [21] M. Okuyama, IEEE International Symposium on Micromechatronics and Human Science, 29, 1998. [22] E. Bakker, P. Bühlmann, E. Pretsch, Electroanalysis, 11, 915, 1999. [23] H.C. Cheng, M. Abo, A. Okubo, Analyst, 128, 724, 2003. [24] K. Yokoyama, S. Koide, Y. Kayanuma, Anal. Bioanal. Chem., 372, 248, 2002. [25] R. Kataky, E. Morgan, Biosens. Bioelectron. , 18, 1407, 2003. [26] M. Murata, C. Gouda, K. Yano, Anal. Sci., 19, 1355, 2003. [27] Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, Anal. Chem., 70, 1288, 1998. [28] W. Lu, L. Lin, L. Jiang, Biosensors and Bioelectronics 22(2007) 1101-1105. [29] M. Passamano, M. Pighini, Sensors and Actuators B, 118, 177, 2006. [30] L. Chen, S. Lee, M. Lee, C. Lim, J. Choo, J.Y. Park, S. Lee, S. Joo, K. Lee, Y. Choi, Biosensors and Bioelectronics 23 (2008) 1878-1882. [31] X. Su, Y. Wu, W. Knoll, Biosensors and Bioelectrons 21(2005) 719-726. [32] F. Zezza, M. Pascale, G. Mulè, A. Visconti, J. microbiol. methods., 66, 529, 2006. [33] C. Boozer,J. Ladd., S. Chen, Q. Yu, J. Homola, S. Jiang, Anal. Chem., 76, 6967, 2004. [34] C. Boozer, J. Ladd, S. Chen, S. Jiang, Anal. Chem., 78, 1515, 2006. [35] H.B. Sun, H. Yokota, Anal. Chem. 2000, 72,3138-3141. [36] Uygun, Talanta 79 (2009) 194-198. [37] D. Humen´ık, D. C. Jr., I. Novotn´y, V. Tvaroˇzek ,T. S. Oretskaya, T. Hianik, Medical Engineering & Physics 28(2006) 956-962. [38] M. K. Patel, P. R. Solanki, S. Seth, S. Gupta, S. Khare, A. Kumar, B. D. Malhotra, Electrochemistry Communications 11 (2009) 969-973. [39] Z. Zhang, J. Zhou, A. Tang, Z. Wu, G. Shen, R. Yu, Biosensor and Bioelectronics 25 (2010) 1953-1957. [40] J. Wang, Analytica Chimica Acta, 469, 63, 2002. [41] W. Zhang, T. Yang, C. Jiang, K. Jiao, Applied Surface Science 254 (2008) 4750–4756. [42] N. Zhu, Z. Chang, P. He, Y. Fang, Analytica Chimica Acta 545 (2005) 21–26. [43] C. Jiang, Electrochimica Acta 53 (2008) 2917–2924 [44] Q. Xia, X. Chen, J.H. Liu, Biophysical Chemistry 136 (2008) 101–107. [45] Rice University: Rick Smalley’s Group Home Page-Image Gallery. http://smalley.rice.edu/index.cfm [46] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Chemphyschem, 2, 78, 2001. [47] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363, 605, 1993. [48] C.C. Pang, Min.H. Chen, T.Y. Lin, T.C. Chou, Sensor and Actuators B, 73, 221, 2001. [49] P. C. Pandey, S. Upadhyay, Ida Tiwari, V. S. Tripathi, Anal. Biochem., 288, 39, 2001. [50] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochem. Commun., 5, 408, 2003. [51] M. Umana, J. Waller, Anal. Chem., 58, 2979, 1986. [52] K. Yamamoto, G.Y. Shi, T.S. Zhou, F. Xu, J.M. Xu, T. Kato, J.Y. Jin, L.T. Jin, Analyst, 128, 249, 2003. [53] X. Yu, G. A. Sotzing, F. Papadimitrakopoulos, J. F. Rusling, Anal. Chem., 75, 4565, 2003. [54] K. Wu, J. Fei, S. Hu, Anal. Biochem., 318, 100, 2003. [55] T. N. Rao, I. Yagi, T. Miwa, D.A. Tryk, A. Fujishima, Anal. Chem., 71, 2506, 1999. [56] K.P. Troyer, R.M. Wightman, Anal. Chem., 74, 5370, 2002. [57] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Microchem. J., 73, 325, 2002. [58] T. Nakaminami, S. Kuwabata, H. Yoneyama, Anal. Chem., 71, 1928, 1999. [59] J. Wang, M.P. Chatrathi, B. Tian, R. Polsky, Anal.Chem., 72, 2514, 2000. [60] A. Hirsch, Angew. Chem. Int. Ed., 41, 1853, 2002. [61] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280, 1253, 1998. [62] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc., 123, 10699, 2001. [63] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett., 321, 292, 2000. [64] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B, 103, 4318, 1999. [65] P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett., 310, 367, 1999. [66] J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, 108, 11317 [67] J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. Soc., 122, 5879, 2000. [68] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Angew. Chem. Int. Ed., 40, 1721, 2001. [69] A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed., 41, 2508, 2002. [70] The homepage of Fraunhofer IGB: http://www.igb.fraunhofer.de/WWW/GF/Biokatalyse/dt/GFBK_221_B1_Chitosan.dt.html [71] P.R. Klokkevold, H. Fulayama, E.C. Sung, Br. J. Oral Maxillofac. Surg., 57, 49, 1999. [72] S. Tajima, M. Hashiba, T. Suzuki, H. Akanuma, M. Yabuuchi, Biomedical chromatography : BMC, 7, 41, 1993. [73] 洪鈺惠,以電化學沉積鉑和鉑釕金屬在多層壁奈米碳管-全氟磺酸聚合物薄膜上最為甲醇燃料電池陽極材料之探討,中興化工所碩士論文,2007年 [74] 鄭人豪,白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究,南台科技大學化工所碩士論文,2004年 [75] 陳志宏,頻譜分析技術於幾丁寡醣修飾性葡萄糖生物感測器之應用,雲林科技大學化工所碩士論文,2005年 [76] 魏秀穎,利用金奈米微粒研究直線型金屬串做導電性介質與介電常數,國立清華大學化學工程學系碩士論文,1996 [77] G. Binning, C.F. Quate, Ch. Gerber, Phys. Rev. Lett., 56, 930, 1986. [78] Y. Yang, Z. Wang, M. Yang, J. Li, F. Zheng, G. Shen, R. Yu. Analytica Chimica Acta. 584 (2007) 268-274 [79] N. Zhou, T. Yang, C. Jiang, M. Du, K. Jiao, Talanta 77 (2009) 1021-1026. [80] Y. Feng, T. Yang, W. Zhang, C.Jiang, K. Jiao, Analytica Chimica Acta 616 (2008) 144-151.
摘要: 
本研究成功以單股探針DNA(single-stranded DNA, ssDNA, probe DNA),多層壁奈米碳管(multi-walled carbon nanotube, MWNT),幾丁聚醣(chitosan, CHIT),製備出ssDNA/MWNT/CHIT生物奈米複合材料薄膜修飾玻璃碳電極(glassy carbon electrode, GCE),證明具有偵測目標DNA(target DNA)的能力。其中MWNT具有優勢的電化學活性並且成為奈米導線複合材料,CHIT以其優良的成膜性、良好的貼附性成為此次感測器之載體,也以其帶有之NH3+官能基將probe DNA固定於電極上,讓此DNA感測器擁有優秀的線性偵測範圍與不錯的選擇性。此次實驗使用原子力顯微鏡(atomic force microscope, AFM)來確認所製備之生物奈米複合薄膜之表面形態,並觀察其ssDNA在雜交過後之方均根粗糙度(root means square roughness, RMS)改變。為了使該生物感測器之表現最佳化,我們探討幾個實驗條件的最適值如雜交時間、雜交系統之pH值等。本實驗之最佳化後之DNA感測器之靈敏度為84.93(µA/cm2*log mol/L),偵測其target DNA之線性範圍為10-6 M到10-11 M,偵測極限為2×10-12 M。

A sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes (MWNT) and chitosan (CHIT) for DNA immobilization and enhanced hybridization detection is presented. The morphology of the resulting MWNT/CHIT/GCE, ssDNA/MWNT/CHIT/GCE and dsDNA/MWNT/CHIT/GCE are investigated by atomic force microscopy (AFM). The decreasing root means square roughness (RMS) shows the probe DNA is immobilized in the MWNT/CHIT film. After hybridization, the increased RMS shows the probe DNA and target DNA hybridized. The hybridization reaction on the electrode was monitor by differential pulse voltammetry (DPV) analysis using K3[Fe(CN)6] as the mediator. The influence of several experimental parameters such as the ratio of the probe DNA to MWNT/CHIT, hybridization time and solution pH value are explored to optimize the electroanalytical performance of the DNA sensor. The linear range of this sensor to target DNA is from 10-6 M to 10-11 M. The detection limit is 210-12 M.
URI: http://hdl.handle.net/11455/3845
其他識別: U0005-2506201016573700
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.