Please use this identifier to cite or link to this item:
標題: 高功率發光二極體之熱管理與界面反應
Thermal management and interfacial reactions of high-power light-emitting diodes
作者: 陳佳汝
Chen, Chia-Ju
關鍵字: high-power light-emitting diodes;高功率發光二極體;熱管理;界面反應
出版社: 化學工程學系所
引用: 第六章 參考文獻 [1] M. Arik, J. Petroski and S. Weaver, "Thermal challenges in the future generation solid state lighting application: light emitting diodes", International Society Conference on Thermal Phenomena, pp. 113-120, (2002). [2] 黃振東,「LED封裝及散熱基板材料之現況與發展」,工業材料雜誌, 70-81頁,民國九十五年。 [3] F. Wall, P. Martin and G. Harbers, "High Power LED Package Requirement", Third International Conference on Solid State Lighting, Proceeding of SPIE, vol. 5187, pp. 85-92, (2004). [4] Optoelectronics Industry Development Association (OIDA), Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002. [5] F. P. McCluskey, M. Dash, Z. Wang and D. Huff, "Reliability of high temperature solder alternatives", Microelectronics Reliabilty, vol. 46, pp. 1910-1914, (2006). [6] H. H. Kim, S. H. Choi, S. H. Shin, Y. K. Lee, S. M. Choi and S. Yi, "Thermal transient characteristics of die attach in high power LED PKG", Microelectronics Reliabilty, vol. 48, pp. 445-454, (2008). [7] S. W. Chen and Y. W. Yen, "Interfacial reactions in Ag-Sn/Cu couples", Journal of Electronic Materials, vol. 28, pp. 1203-1208, (1999). [8] W. K. Choi and H. M. Lee, "Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate", Journal of Electronic Materials, vol. 29, pp. 1207-1213, (2000). [9] K. N. Tu and K. Zeng, "Tin-lead(SnPb) solder reaction in flip chip technology", Materials Science and Engineering R, vol. 34, pp. 1-58, (2001). [10] K. Z. Wang and C. M. Chen, "Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with Ti/Cu/Ni under bump metallization during reflow soldering", Journal of Electronic Materials, vol. 34, pp. 1543-1549, (2005). [11] C. E. Ho, R. Y. W. Lin, S. C. Yang, C. R. Kao and D. S. Jiang, "Effects of limited Cu supply on soldering reactions between SnAgCu and Ni", Journal of Materials Research, vol. 35, pp. 1017-1024, (2006). [12] 潘錫明,「認識發光二極體」,科學發展,第435期,6-11頁,民國九十八年。 [13] J. Petroski, "Thermal challenges facing new generation light-emitting diodes (LEDs) for lighting applications", Solid State Lighting II, Proceedings of the SPIE, vol. 4776, pp. 215-222, (2002). [14] F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y. C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier and J. J. Wierer, "High power LEDs technology status and market applications", Physica Status Solidi (a), vol. 194, pp. 380-388, (2002). [15] N. Narendran and Y. Gu "Life of LED-Based White Light Sources", Journal of Display Technology, vol. 1, pp. 167-171, (2005). [16] M. Arik and S. Weaver, "Effect of chip and bonding defects on the junction tempertures of high-brightness light emitting diodes", Optical Engineering, vol. 44, pp. 11305, (2005). [17] C. L. Chang, Y. C. Chuang and C. Y. Liu, "Ag/Au diffusion wafer bonding for thin-GaN LED fabrication", Electrochemical and Solid-State Letters, vol. 10, pp. H344-H346, (2007). [18] NeoPac Thermal Technology, Thermal technology: Ultre-high-power enabling, management.html [19] R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu and H. I. Lin, "Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders", Applied Physics Letters, vol. 93, pp. 1-3, (2008). [20] P. H. Chen, C. L. Lin, Y. K. Liu, T. Y. Chung and C. Y. Liu, "Diamond heat spreader layer for high–power thin GaN light-emitting diodes", IEEE Photonics Technology Letters, vol. 20, pp. 845-847, (2008). [21] 宋建民,「台灣鑽石技術的大躍進」,機械工業技術與產業資訊專輯,第275期, 44頁,民國九十五年。 [22] P. Hui and H. S. Tan, "Temperature distributions in a heat dissipation system using a cylindrical diamond heat spreader on a copper heat sink", Journal of Applied Physics, vol. 75, pp. 748-757, (1994). [23] J. S. Goela and J. E. Graebner, High Thermal Conductivity Materials, New York, USA, Springer, (2006). [24] A. Christensen and S. Graham, "Thermal effects in packaging high power light emitting diode arrays", Applied Thermal Engineering, vol. 29, pp. 364-371, (2009). [25] 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,台灣,高立圖書有限公司,民國九十三年。 [26] J. E. Morris, Workshop, "The design and processing technology of electronic packaging", (1997). [27] 鐘文仁、陳佑仁,IC封裝製程與CAE應用,台灣,全華科技圖書,民國九十三年。 [28] S. Bader, W. Gust. and H. Hieber, "Rapid formation of intermetallic compounds interdiffusion in the Cu/Sn and Ni/Sn systems", Acta Metallurgica et Materialia, vol. 43, pp. 329-337, (1995). [29] J. W. Park, Y. B. Yoon, S. H. Shin and S. H. Choi "Joint structure in high brightness light emitting diode (HB LED) packages", Materials Science and Engineering A, vol. 441, pp. 357-361, (2006). [30] N. Saunders and A. P. Miodownik, Bulletion of Alloy Phase Diagrams, vol. 11, pp. 278-287, (1990). [31] Z. Mei, A. J. Sunwoo and J. W. Morris. Jr. , "Analysis of low-temperature intermetallic growth in copper-tin diffusion couples", Metallurgical Transaction A, vol. 23, pp. 857-864 (1992). [32] H. K. Kim, K. N. Tu and P. A. Totta, "Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers", Applied Physics Letters, vol. 68, pp. 2204-2206, (1996). [33] A. A. Liu, H. K. Kim and K. N. Tu, "Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films", Journal of Applied Physics, vol. 80, pp. 2774-2780, (1996). [34] H. Okamoto "Au-Sn (Gold-Tin)", Journal of Phase Equilibria and Diffusion, vol. 28, pp. 490, (2007). [35] G. Elger, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl and E. Jäger, "Development of an assembly process and reliability investigations for flip-chip LEDs using the AuSn soldering", Microsystem Technologies, vol. 7, pp. 239-243, (2002). [36] C. W. Chang, Q. P. Lee and C. R. Kao, "Cross-interaction between Au and Cu in Au/Sn/Cu ternary diffusion couples", Journal of Electronic Materials, vol. 35, pp. 366-371, (2006). [37] Y. W. Yen, H. W. Tseng, K. Zeng, S. J. Wang and C. Y. Liu, "Cross-interaction between Au/Sn and Cu/Sn interfacial reactions", Journal of Electronic Materials, vol. 38, pp. 2257-2263, (2009). [38] 高振宏,何政恩,「抑制易脆之Au介金屬於微電子封裝銲點中生成之方法」,知識創新,第二十四期,民國九十一年。 [39] C. W. Chang, C. E. Ho, S. C. Yang and C. R. Kao, "Kinetics of AuSn4 Migration in Lead-Free Solders", Journal of Electronic Materials, vol. 35, pp. 1948-1954, (2006). [40] 林敬倍,高功率發光二極體之熱管理最佳化設計與製作,國立中興大學碩士論文,民國九十八年。 [41] F. Jiang, W. Liu, Y. Li, W. Fang, C. Mo, M. Zhou and H. Liu, "Research on the junction-temperature characteristic of GaN light-emitting diodes on Si substrate", Journal of Luminescence, vol. 122, pp. 693-695, (2007). [42] V. Szekely, "A new evaluation method of thermal transient measurement results", Microelectronics Journal, vol. 28, pp. 277-292, (1997). [43] 王建評、黃勝邦,「LED 封裝界面熱阻量測技術」,工業材料雜誌,第266期, 87-91頁,民國九十八年。 [44] H. Y. Kuo, S. J. Wang and P. R. Wang, "A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes", Applied Physics Letters, vol. 92, pp. 021105 (2008). [45] S. Y. Jang, J. Wolf, O. Ehrmann, H. Gloor, H. Reichl and K. W. Paik, "Pb-free Sn/3.5Ag electroplating bumping process and under bump metallization (UBM)", IEEE Transactions on Electronics Packaging Manufacturing, vol. 25, pp. 193-202, (2002). [46] M. S. Shin and Y. H. Kim, "Microstructure characterization of Sn-Ag solder joints between stud bumps and metal pads", Journal of Electronic Materials, vol. 32, pp. 1448-1454, (2003). [47] Y. W. Yen, C. C. Jao, H. M. Hsiao, C. Y. Lin and C. Lee, "Investigation of the phase equilibria of Sn-Cu-Au ternary and Ag-Sn-Cu-Au quaternary systems and interfacial reactions in Sn-Cu/Au couples", Journal of Electronic Materials, vol. 36, pp. 147-158, (2007). [48] C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin and C. R. Kao, "Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish", Journal of Electronic Materials, vol. 29, pp. 1175-1181, (2000). [49] C. E. Ho, L. C. Shiau and C. R. Kao, "Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints", Journal of Electronic Materials, vol. 31, pp. 1264-1269, (2002).

In recent years, due to the rising ideology of energy saving and environmental friendly policies, the high-power light-emitting diodes (HP-LED) characterized with high efficiency and energy saving that has been a potential candidate for next generation light sources. However, HP-LED requires high current drives than before and then generates much heat. Only 40~50﹪of the input power converts to light and the rest converts to heat. The heat generated by the chip must be dissipated to the environment effectively in order to maintain the thermal stability of the LED devices. But nowadays the using of die attach materials currently used in the first level package are usually epoxy、sliver paste and solder paste, their thermal conductivity is not sufficient to dissipate the heat to the environment.
We proposed a new composite die attach material for LED packaging. This composite die attach material is prepared by adding proper amounts of diamond particles into commercial Sn-3wt.%Ag-0.5wt.%Cu (SAC305) solder paste. Since diamond is a highly heat conductive material with an excellent heat conductivity of 2000 W/mk, its incorporation into the SAC305 solder paste (~ 20 W/mk) can promote greatly the heat conductive capacity of the die attach materials and thereby dissipates heat more effectively. From the results of infrared image and thermal resistance analysis confirm that the composite solder is useful in promoting the heat conductivity of die attach layer and dissipating heat more effectively.
Interfacial reactions in the LED solder joints were also investigated. The thin Au wetting layer in the chip backside metallization was rapidly consumed in the initial stage of reflow, forming an AuSn4 phase at the interface. Subsequently, the AuSn4 phase detached from the interface, leading to dewetting of the SAC305 solder with the LED chip. In order to avoid dewetting, either a new backside metallization of LED chips should be developed for SAC305 solder.
After solid-state aging for 1 day to 20 days at 150oC, the AuSn4 phase at the chip side do not detach from the interface, because 150oC is lower than the melting point, the AuSn4 phase doesn’t dissolve into the molten solder, so the results are not consistent with the liquid-state reaction.
It’s not useful to restrain the detachment by electroplating Ni layer on the metallization of heat sink, when rising the reflow time, the (Au,Ni)Sn4 phase migrate to the (Ni,Cu)3Sn4 layer severely, the presence of a layer of brittle (Au,Ni)Sn4 at the interface severely weakens the solder joints.
其他識別: U0005-2707201012005900
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.