Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3847
標題: 多層壁奈米碳管/二氧化鈦複合材料薄膜作為染料敏化太陽能電池之探討
Dye-sensitized solar cell based on multiwalled carbon nanotubes/titanium dioxide composite film
作者: 林威志
Lin, Wei-Jhih
關鍵字: carbon nanotube;奈米碳管;titauium dioxide;dye-sensitized solar cell;二氧化鈦;染料敏化太陽能電池
出版社: 化學工程學系所
引用: 第五章 參考文獻 [1] M. Gratzel, Nature, 414, 338, (2001). [2] 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86. [3] M. Gratzel, Nature 2000(403) 363. [4] B. O’Regan, M. Gratzel, Nature 353 (1991) 737-739 [5] 楊素華、蔡泰成, “太陽能電池篇”, 科學發展雜誌, 2005年6月, 390期. [6] J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, (108)11317. [7] Y.C. Tsai, C.C. Chiu, M.C. Tsai, J.Y. Wu, T.F. Tseng, T.M. Wu, S.F. Hsu, Carbon 45(2007)2823 [8] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovolt: Res. Appl (2008)61 [9] N. B. Chaure, J. Youang, A. P. Samantilleke, Sol. Energy Mater. Sol. Cells 81(2004) [10] M. K. Nazzeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C.A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 123 (2001) 6382 [11] Gerald Oster, Judith S. Bellin, Robert W. Kimball, Malcolm E. Schrader, J. Am. Chem. Soc. 81(1959) 5095-5099. [12] 馬振基, “有機與塑膠太陽能電池”, 五南, 台北市, 第三章, 民96. [13] R. Argazzi﹐Inorg. Chem. 33(1994) 5741 [14] K. Finnie, J. Bartlett, J. Woolfrey﹐Langmuir 14(1998) 2749 . [15] Md. Nazeeruddin﹐Langmuir 16(2000)8525 [16] K .Murakoshi﹐J.Electroanal. Chem. 396(1995)27. [17] K. Sayama, H. Sugihara, H. Arakawa﹐Chem. Mater. 10(1998)3825. [18] C. Klein, Md. K. Nazeeruddin, D. D. Censo﹔P. Liska, M.Gratzel﹐Inorg. Chem. 43(2004) 4216. [19] Y. Liu, A. Hagfeldt, X.Xiao, S.Lindquist﹐Sol. Energy Mater.Sol. Cells 55(1998)267. [20] K. Hara﹐Sol. Energy Mater. Sol. Cells 70(2001) 151 . [21] U. Bach, D. Lupo, M Gratzel, Nature 395 (1998) 583. [22] N. Papageorgiou, W. F. Maier, M. Gratzel, J. Electrochem. Soc. 144(1997)876 [23] A. Kay, M. Gratzel, Sol. Energy Mater. Sol. Cells 44 (1996) 99 [24] E. Ramasamya, W. J. Leea, D. Y. Leea , J. S. Songa, Electrochem. Commun. 10 (2008) 1087 [25] K. Vinodgopal, P. V. Kamat, Environ. Sci. Technol. 29(1992) 841. [26] S. Hotchandani, P. V. Kamat, Chem. Phys. Lett. 191(1992) 320. [27] I. Shiyanovskaya, M. J. Hepel, Electrochem. Soc. 145(1998) 3981. [28] A. Fujishima, K. Honda, Nature 238(1972)37. [29] D. Ulrike, Surf. Sci. Rep. 48(2003)58. [30] M. A. Fox, M. Y. Dulay, Chem. Rev. 93(1993) 341. [31] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95(1995) 735. [32] M. R. Hoffmann, S. T. Martin, W. Choi, Chem. Rev. 95(1995) 69. [33] P. Serp, P. Kalck, R. Feurer, Chem. Rev. 102(2002) 3085. [34] K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, Chem. Mater. 16(2004) 1165. [35] Y. Ohko, K. Hashimoto, and A. Fujishima, J. Phys. Chem. A 101(1997) 8057. [36] C. Anderson , A. J. Bard, J. Phys. Chem. 99(1995) 9882. [37] Alex H.C. Chan, Chak K. Chan, John P. Barford, John F. Porter, Water Research 37(2003) 1125. [38] M. Cho, H. Chung, W. Choi, J. Yoon, Water Research 38(2004) 1069. [39] S. Horikoshi, H. Hidaka, N. Serpone, Environ. Sci. Technol. 36(2002) 1357. [40] S. Horikoshi, H. Hidaka, N. Serpone, Environ. Sci. Technol. 36(2002) 5229. [41] Q. Sun, Y. Jiang, Z. Jiang, L. Zhang, X. Sun, J. Li, Ind. Eng. Chem. Res. 48(2009)4210 [42] Gerald Oster, Judith S. Bellin, Robert W. Kimball, Malcolm E. Schrader, J. Am. Chem. Soc. 81(1959) 5095-5099. [43] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69(1965)641 [44] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69(1965) 647. [45] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69(1965) 2834. [46] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 69(1965) 2842 [47] Kearns, J. Am. Chem. Soc. 89(1967) 5455 [48] Kearns, J. Am. Chem. Soc. 89(1967) 5456 [49] R.D. McConnell, Renew. Sust. Energ. Rev. 5(2002)273 [50] M. Gratzel, J. Photochem. Photobiol. C-Photochem. Rev. 4 (2003) 145 [51] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 1976(261) 402. [52] K. MoHammad, P. Nazeeruddin, R. Thierry, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 123(2001) 1613 [53] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127(2005) 16835 [54] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45(2006) L638 [55] J. Ferber, J. Luther, Sol. Energy Mater. Sol. Cells 54(1998)265 [56] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Gratzel, J. Phy.s. Chem. B 107 (2003) 14336 [57] Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordin. Chem. Rev. 248 (2004) 1381 [58] S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Chem. Commun. (2005) 2011 [59] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, Adv. Mater. 20 (2008) 195 [60] T. Y. Tsai, S. Y. Lu, Electrochem. Commun. 11 (2009) 2180-2183 [61] M. Gratzel, Inorg. Chem. 44 (2005) 6841 [62] G. J. Meyer, Inorg. Chem. 44 (2005) 6582 [63] T. A. Hemier, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phy.s. Chem. A 104 (2000) 4256-4262 [64] M. Gratzel, J. Photochem. Photobiol. A 164 (2004) 3-14 [65] P. V. Kamat, M. Haria, S. J. Hotchandani, J. Phys. Chem. B 108 (2004) 5166-5170 [66] D. J. Sirbuly, M. Law, H. Yan, P. Yang, J. Phys. Chem. B 109(2005)15190 [67] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 5 (2005) 191 [68] M. Adachi, Y. Murata, I. Okada, S.Yoshikawa, J. Electrochem. Soc. 150 (2003) G488 [69] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4 (2005) 455 [70] V. I. Klimov, J. Phys. Chem. B 110 (2006) 16827 [71] E. Galpppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. J. Boschloo, J. Phys. Chem. B 110 (2006) 16159 [72] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 6 (2006) 215 [73] T. Durkop, S. A. Getty, E. Cobas, M.S. Fuhrer,Nano Lett. 4 (2004) 35 [74] R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92 (2009) 289 [75] A. Kongkanand, R. M. Dominguez, P. V. Kamat, Nano Lett. 7 (2007) 676 [76] A. Kongkanand, P. V. Kamat, ACS nano 1(2007) 13 [77] C. Y. Yen, Y. F. Lin, S. H. Liao, C. C. Weng, C. C. Huang, Y. H. Hsiao, C. C. M Ma, M. C. Chang, H. Shao, M. C. Tsai, C. K. Hsieh, C. H. Tsai, F. B. Weng, Nanotechnology 19 (2008) 375305 [78] S. Yodyingyong, Q. Zhang, K. Park, C. S. Dandeneau, X. Zhou, D. Triampo, G. Cao, Appl. Phys. Lett. 96(2010)073115 [79] P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Electrochem. Commun. 11 (2010) 1001-1004 [80] Rice University: Rick Smalley’s Group Home Page-Image Gallery. http://smalley.rice.edu/index.cfm [81] M. C. Hersam, Nat. Nanotechnol. 3(2008)387 [82] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363 (1993) 605. [83] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nash, Chem. Phys. Chem., 2 (2001) 78. [84] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 68 (1992) 1579. [85] R.Saito, M. Fujita, G. Dresselhaus, M. S. Dresslhaus, Appl. Rev. Lett. 60 (1992) 2204. [86] J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature,391 (1998) 59. [87] J. E. Fischer, Acc. Chem. Res. 35 (2002) 1079. [88] M. Terrones, W. K. Hsu, H.W. Kroto, D. R. M. Walton, Topics in Current Chemistry, 1991 (1998) 1. [89] J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 59 (1999) 2514. [90] M. A. Osman, D. Srivastava, Nanotechnolory, 12 (2001) 21. [91] M. R. Falvo, G. J. Clary, R. M. II Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature, 277 (1997) 1971. [92] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381 (1966) 678. [93] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science, 277 (1997) 1971. [94] M.R. Pederson, J.Q. Broughton, Physical Review Letters, 69 (1992) 2689. [95] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature, 386 (1997) 377. [96] G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, W. Z. Li, J. Power Sources, 75 (1998) 175. [97] F. Beguin, V. A. Nalimova, D. E. Sklovsky, G. N. Bondarenko, H. Alvergnat-Gaucher, S. Bonnamy, Synthetic Metals, 88 (1997) 89. [98] A. Hirsch, Angew. Chem. Int. Ed., 41 (2002)1853. [99] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280 (1998)1253. [100] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc., 123(2001)10699. [101] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett., 321(2000)292. [102] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B, 103(1999) 4318. [103] P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett., 310(1999) 367. [104] M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297(2002)593. [105] M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett., 342(2001) 265. [106] J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, 108(2002)11317. [107] J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. Soc., 122(2000) 5879. [108] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Angew. Chem. Int. Ed., 40(2001) 1721. [109] B. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed., 41(2002) 2508. [110] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [111] D.R.Crow,Principle and Applications of Electrochemistry,高立,1998。 [112] M.A.B. Christopher, A.M.O. Brett, Electrochemistry Principles, Methods, And Application, Oxford New York, 1993. [113] C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol. A: Chem. 159 (2003) 33 [114] M.C. Bernard, H. Cachet, P. Falaras, A. Hugot-Le Goff, M. Kalbac, I. Lukes, N.T. Oanh, T. Stergiopoulos, I. Arabatzis, J. Electrochem. Soc. 150 (2003) E155. [115] J.H. Rouse, Langmuir, 21(2005) 1055. [116] R.J. Nemanich, S.A. Solin, Solid State Commun. , 23 (1977) 417. [117] J.R. Wood, M.D. Frogley, E.R. Meurs, A.D. Peijs, D.J. Dustan, J. Phys. Chem. B, 103(1999) 10388. [118] H.D. Sun, Z.K. Tang, J. Chen, G. Li, Solid State Commun. , 109(1999)365. [119] M. D. Veij, P. Vandenabeele, T. D. Beer, J. P. Remon, L. Moens, J. Raman Spectrosc. 40(2009)297. [120] I. Robel, B. Bunker, P. V. Kamat, Adv. Mater. 17 (2005)2458
摘要: 
此研究是使用一種新穎非共價鍵與非有機溶液修飾的方式藉由奈米顆粒來分散奈米碳管於水溶液中,多層壁奈米碳管(multi-walled carbon nanotubes, MWNTs)被帶有高正電荷的二氧化鈦(titanium dioxide, TiO2)奈米顆粒直接分散於水溶液中,且並沒有將多層壁碳管的表面官能基化。經由穿透式電子顯微鏡及原子力顯微鏡的微觀表面形貌分析,可以確定帶正電荷TiO2奈米顆粒確實可圍繞於多層壁奈米碳管之上,且可有效的將多層壁奈米碳管彼此間分散開來。為了探討水溶液的pH值、將TiO2奈米顆粒於水溶液中的量、以及MWNTs於水溶液中的量,對於多層壁奈米碳管的分散有何影響,而去設計一連串的實驗,在經過超音波震盪一個半小時後,觀察多層壁奈米碳管的分散情形。
之後我們將MWNTs-TiO2複合材料修飾於FTO導電玻璃上,以電子顯微鏡來觀察修飾後的表面形貌,將MWNTs-TiO2複合材料薄膜修飾FTO導電玻璃浸於含有5 mM Fe(CN)63-/4-氧化還原物的0.1 M氯化鉀(potassium chloride, KCl)溶液系統中,分別以不同的掃描速度(25~500 mV/s)掃描之循環伏安實驗中,我們可以觀察到隨著掃描速度不斷的增加,除了會使得陽極的峰電流及陰極的峰電流增加,而且陽極峰電流及陰極峰電流分別與掃描速率的平方根成正比的線性關係,因此可以判斷出由MWNTs-TiO2複合材料薄膜修飾FTO導電玻璃所進行的電化學反應屬於擴散控制。我們將MWNTs-TiO2複合材料薄膜修飾FTO導電玻璃做為電化學分析去偵測過氧化氫(hydrogen peroxide, H2O2)與還原型煙胺腺嘌呤二核酸(β-nicotinamide adenine dinucleotide, reduced form, NADH)時,發現可用較小之電壓即可催化H2O2與NADH,而得到相當高之電流訊號。
下依個部份我們將組成雙層結構(TiO2/MWNTs-TiO2)的光電極於染料敏化太陽能電池應用,第一層為奈米TiO2薄膜,第二層為MWNTs-TiO2複合材料薄膜,我們將使用電子顯微鏡及穿透式電子顯微鏡來複合材料薄膜探討表面型態,將組裝好的太陽能電池,在模擬太陽光的強度下量測光電轉換效率,比較TiO2/MWNTs-TiO2雙層結構及TiO2單層結構,所得到電流可提升65%且光電轉換效率能提升100%,接下來以交流阻抗測試來分析原因,得到TiO2/MWNTs-TiO2雙層結構確實能降低染料敏化太陽能電池的內部電阻,且量測出MWNTs-TiO2對於光電轉換效率的最佳膜厚值,最後期望這種雙層結構染料敏化太陽能電池設計能應用在其他複合材料。

A novel noncovalent and inorganic method was used to disperse multiwalled carbon nanotubes (MWNTs) in aqueous solution. MWNTs were directly dispersed into highly charged titanium dioxide (TiO2) nanoparticles aqueous solution without functionalization of their surfaces. The dispersed MWNTs were characterized by transmission electron microscopy and atomic force microscopy. A series of experiments were carried out with the aid of ultrasonic agitation for 1.5 hr in order to investigeate the effects of solution pH value, amount of TiO2 nanoparticles in aqueous solution, and amount of MWNTs dispersed in aqueous solution.
The MWNTs-TiO2 nanocomposite modified onto the surface of fluorine-doped tin oxide (FTO) glass. The resulting MWNTs-TiO2 modified FTO glass was investigated by field emission scanning electron microscopy. In cyclic voltammetric responses, both anodic and cathodic peak currents varied linearly with the square root of scan rates in 0.1 M KCl containing 5 mM Fe(CN)64 - at MWNTs-TiO2 coated FTO glass, which suggests a diffusion-controlled process. The MWNTs-TiO2 modified FTO glass exhibits the abilities to raise the current responses and to decrease the electrooxidation potential of β-nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H2O2).
A novel dye-sensitized solar cell (DSSC) was constructed using a TiO2 and MWNTs-TiO2 bilayer film. The MWNTs-TiO2 nanocomposite morphology was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Compared with single layer TiO2 cell, and bilayer TiO2/MWNTs-TiO2 cell were examined photoelectrical performance by J-V characteristics in solar simulated light irradiation AM 1.5 (100 mW cm-2). The bilayer TiO2/MWNTs-TiO2 cell performances enhance photocurrent density 65% and conversion efficiency improve 100% than that single layer TiO2 cell. The charge transport of cells was characterized by electrochemical impedance spectroscopy (EIS). The TiO2/MWNTs-TiO2 bilayer cell exhibited the abilities to reduce transfer resistance. An optimum of the MWNTs-TiO2 film thickness was achieved a high conversion efficiency of the DSSC. It is expected that the bilayer structure can be extended to other composite films for enhancing the efficiency of the DSSC.
URI: http://hdl.handle.net/11455/3847
其他識別: U0005-2806201010590300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.