Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3854
DC FieldValueLanguage
dc.contributor李榮和zh_TW
dc.contributorRong-Ho Leeen_US
dc.contributor丁維和zh_TW
dc.contributor陳錦地zh_TW
dc.contributorWei-Ho Tingen_US
dc.contributorChin-Ti Chenen_US
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.advisorRu-Jong Jengen_US
dc.contributor.author蔡偉祥zh_TW
dc.contributor.authorTsai, Wei-Hsiangen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T05:32:55Z-
dc.date.available2014-06-06T05:32:55Z-
dc.identifierU0005-0208201110304400zh_TW
dc.identifier.citation1. Zyss, J.; Chemla, D. S., Nonlinear Optical Properties of Organic Molecules and Crystals 1987, Vol I, Chapter2-1. 2. Kuo, W. J.; Hsiue, G. H.; Jeng, R. J. J. Mater. Chem. 2002, 12, 868. 3 .Van den Broeck, K.; Verbiest, T.; Degryse, J.; Van Beylen, M.; Persoons, A.; Samyn, C. Polymer. 2001, 42, 3315. 4 .Tsai, H. C.; Kuo, W. J.; Hsiue, G. H. Macromol. Rapid Commun. 2005, 26, 986. 5 .Xu, G.; Si, J.; Liu, X.; Yang, O.; Ye, P.; Li, Z.; Shen, Y. Opt. Commun. 1998, 153, 95. 6. Kuo, W. J.; Chang, M. C.; Juang, T. Y.; Chen, C. P.; Chen, C. T.; Chang, H. L.; Jeng, R. J. Polym. Adv. Technol. 2005, 16, 515. 7. Chen, Y. C.; Chang, H.L.; Lee, R.H.; Dai, S.A.; Su, W.C.; Jeng, R.J. Polym. Adv. Technol. 2009, 20, 493. 8. Marder, S. R.; Perry, J. W. Science. 1994, 263, 1706. 9 .Sigelle, M.; Hierle, R. J. Appl. Phys. 1981, 52, 4199. 10. Singer, K. D.; Kuzyk, M. G.; Holland, W. R.; Lalama, S.; Comizzoli, R. B.; Katz, H. E.; Schilling, M. L. Appl. Phys. Lett. 1988, 53, 1800. 11. Uchiki, H.; Kobavashi, T. J. Appl. Phys. 1988, 64, 2625. 12. Messier, J.; Kajzar, F.; Prasad, P., Organic Molecules for Nonlinear Optics and Photonics Series: E. 1991, 194. 13. Teng, C. C.; Man, H. T. Appl. Phys. Lett. 1990, 56, 1734. 14. Shuto, Y.; Amano, M. J. Appl. Phys. 1995, 77, 4632. 15. Dalton, L. R.; Haper, A. W., Photoactive organic materials for Electro-optic modulator and high density Optical memory applications., In: Kajzar, F.; Avranovich, V. M.; Lee, C. Y. C. (eds) Photoactive organic materials: science and application. NATO ASI Series, vol 9, Kluwer Academic, Dordrecht, 1996, 183. 16. McLellan, E. J.; Figueira, J. F. Rev. Sci. Instrum. 1979, 50, 1213. 17. Davydov, B. L.; Dekacheva, L. D.; Dunina, V. V.; Zhabotinskii, M. E.; Zolin, V. F.; Koreneva, L. G.; Samokhina, M. A. JEPT Lett. 1970, 12, 16. 18. Levine, B. F.; Bethea, G. F. J. Chem. Phys. 1975, 63, 2666. 19. Ouder, J. L. J. Chem. Phys. 1977, 67, 446. 20. Pethkar, S.; Dharmadhikari, J. A.; Athawale, A. A.; Vijayamohanan, K.; Aiyer, R. C. J. Phys. Chem. B. 2001, 105, 5110. 21. Xie, H. Q.; Liu, Z. H.; Huang, X. D.; Guo, J. S. Eur. Polym. J. 2001, 37,497. 22. Kajzar, F.; Lee, K. S.; Jen, A. K. Y. Adv. polym. Sci. 2003, 161, 1. 23. Meredith, G. R.; VanDusen, J. G.; Williams, D. J. Macromolecules 1982, 15, 1385. 24. Shi, W.; Fang, C.; Pan, Q.; Qin, Z.; Xu, D.; Yu, J. J. Phys. D: Appl. Phys. 2002, 35, 1404. 25. Wu, J. W.; Valley, J. F.; Ermer, S.; Binkley, E. S.; Kenney, J. T.; Lipscomb, G. F.; Lytel, R. Appl. Phys. Lett. 1991, 58, 225. 26. Kuo, W. J.; Hsiue, G. H.; Jeng, R. J. Macromolecules. 2001, 34, 2373. 27. Shi, Y. Q.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119. 28.Yesodha, S. K.; Sadashiva Pillai, C. K.; Tsutsum, N. Prog. Polym. Sci. 2004, 29, 45. 29. Becker, M. W.; Sapochak, L. S.; Ghosen, R.; Xu,C.; Dalton, L. R. Chem. Mater. 1994, 6, 104. 30. Chen, T. A.; Jen, A. K. Y.; Cai, Y. J. Am. Chem. Soc. 1995, 117, 7295. 31. Li, Z.; Wu, W. ; Li, Q. ; Xiao, L. Dyes and Pigments, 2010,84, 134. 32. He,M ; Zhou,Y.; Miao, J. ; Liu, C. ; Cui, Y. ; Zhang , T.Dyes and Pigments. 2010,86 ,107 33. Zeng, Q. ; Qiu, G. ; Ye, C. ; Qin, J. ; Li, Z. Dyes and Pigments. 2010, 84, 229. 34. Tsutsumi, N.; Morishima, M.; Sakai, W. Macromolecules. 1998, 31, 7764. 35. Yoon, K. R.; Byun, N. M.; Lee, H. Synth. Metals. 2007, 157, 603. 36. Gacal, B.; Clanga, L.; Agag, T.; Takeeichi, T.; Yagci, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2774. 37. Seo, D. K.; Lim, H. S.; Lee, J. Y.; Kim, W. G. Mol, Cryst. Liq. Cryst. 2006, 445, 323. 38. Marturunkaku, S; Chen, J. I.; Li, L.; Jeng, R. J. Kumar, J.; Tripathy, S. K. Chem. Mater. 1993, 5, 592. 39. Park, C. K.; Zieba, J.; Zhao, C. F.; Swedek, B.; Wijekoon, W. M. K. P.; Prasad, P. N. Macromolecules. 1995, 28, 3713. 40. Yokoyama, S.; Nakahama, T.; Otomo, A.; Mashiko, S. J. Am. Chem. Soc. 2000, 122, 3174. 41. Ma, H.; Chen,B.; Sassa, T.; Dalton, L. R. Jen, A. K. Y. J. Am. Chem. Soc. 2001, 123, 986. 42. Scarpaci, A. ; Blart, E. ACS Appl. Mater. Interface. 2009, 1, 1799 43. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819. 44. Tomalia, D. A.; Baker, H.; Dewald, J; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117. 45. Moorefield, C. N.; Newkome, G. R.; Baker, G. R. Aldrichimica Acta. 1992, 25,31. 46. De Gennes, P. G.; Hervet, H. J. Phys. Lett. 1983, 44, 351. 47. Frauenrath, H. Prog. Polym. Sci. 2005, 30, 325. 48. Emran, S. K.; Newkome, G. R.; Weis, C. D.; Harmon, J. P. J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 2038. 49. Jikei, M.; Kakimoto, M. Prog. Polym. Sci. 2001, 26, 1233. 50. Robinson, B. H.; Dalton, L. R. J. Phys. Chem. A. 2000, 104, 4785. 51. Li, Z. ; Zeng, Q. ; Yu, G. ; Li, Zhen. ; Ye, C.; Liu, Y.; Qin, J. Macromol. Rapid. Commun. 2008, 29, 136. 52. Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Adv. Funct. Mater. 2002, 12, 565. 53. Luo, J.; Haller, M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, Y.; Chen, B.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y. J. Phys. Chem. B. 2004, 108, 8523. 54. Do, J.; Park, S. K.; Ju, J. J.; Park, S.; Lee, M. H. Macromol. Chem. Phys. 2003, 204, 410. 55. Dalton, L. R.; Robinson, B. H.; Jen, A. K. Y. ; Steier, W. H.; Nielsen, R. Optic. Mater. 2002, 21, 19. 56. Tian, Y.; Chen, C. Y.; Haller, M.; Tucker, N. M.; Ka, J. W.; Luo, J.; Huang, S.; Jen, A. K. Y. Macromolecules. 2007, 40, 97. 57. Kim, T. D.; Luo, J.; Cheng, Y. J.; Shi, Z.; Hau, S.; Jang, S. H.; Zhou, X. H.; Tian, Y.; Polishaka, B.; Huang, S.; Ma, H.; Dalton, L. R.; Jen. A. K. Y. J. Phys. Chem. C. 2008, 112, 8091. 58. Li, Z.; Yu, G. ; Wu. W.; Liu. Y.; Ye, C.; Qin, J.; Li, Z. Macromolecules. 2009, 42, 3864. 59. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 682. 60.Tasi, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. J. Mater. Chem. 2006, 16, 2056. 61.Chen, Y. C.; Chang, H. L.; Lee, R. H.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polym. Adv. Tech. 2009, 20, 493. 62. Ray, S. S.; Okamoto, M. Prog. Polym. Sci 2003, 28, 1539. 63. Ray, S. S.; Okamoto, K. M. Macromolecules. 2003, 36, 2355. 64. Lin, J. J.; Cheng, I. J.; Wamg, R. C.; Lee, R. J. Macromolecules. 2001, 34, 8832. 65. Chou, C. C.; Chang, Y. C. ; Chiang, M. L.; Lin, J. J. Macromolecules. 2004, 37, 473. 66. Chou, C. C.; Lin, J. J. Macromolecules. 2005, 38, 230. 67. Choy, J. H.; Kwak, S. Y.J; Park, J. S.; Angew. Chem. Int. Ed. 2000, 39, 4041. 68. Costa, A. S.; Imae, T. Langmuir. 2004, 20, 8865. 69. Acosta, E. J.; Deng, Y.; White, G. N.; Dixon, J. B.; Mcinnes, K. J.; Senseman, S. A.; Frantzen, A. S.; Simanek, F. E. Chem. Mater. 2003, 15, 2903. 70. Juang, T. Y.; Tsai, C. C.; Wu, T. M.; Dai, S. A.; Chen, C. P.; Lin, J. J.; Liu, Y. L.; Jeng, R. J. Nanotechnology. 2007, 18, 205606. 71. Wang, W. J.; Kuo, W.; Wang, W. J. J. Polym. Sci. Part B: Polym Phys. 2002, 40, 1690. 72. Yang, C.; Zhou, H.; Chen, X.; Liu, Y.; Qin, J., J. Mater. Chem. 2005, 15,1637. 73. Chao, T. Y.; Chang, H. L.; Su, W. C. ; Wu, J. Y. ; Jeng, R. J. Dyes and Pigments. 2008, 77, 515. 74. Chen, Y.C.; Juang, T.Y.; Dai, S.A.; Wu,T.M.; Lin,J.J.; Jeng, R.J.Macromol. Rapid Commun. 2008, 29, 587. 75. Chen, Y. C.;Juang, T. Y.;Wu, T. M.; Dai, S. H.; Kuo, W. J.; Liu, Y. L.; Chen, M. C.; Jeng, R. J. ACS Applied Materials & Interfaces. 2009, 1 ,2371 76. Teng , C. C., Man, H. T. Appl. Phys. Lett. 1990, 56, 1734. 77. Mortazavi, M. A.; Knoesen, A.; Kowel, S. T.; Henry, R. A.; Hoover, J. M.; Lindsay,G. A. Appl. Phys. B .1991, 53, 287. 78. Schildkraut, J. S. Appl. Opt. 1990, 29, 2839. 79. Shuto, Y. ; Amano, M. J. Appl. Phys. 1995, 77, 4632. 80. Jeng, R. J.; Hsiue, G. H.; Chen, J. I.; Marturunkakul, S.; Li, L.; Jiang, X. L. J. Appl. Polym. Sco. 1995, 55, 209. 81. Shi, W.; Fang, C. S.; Pan, Q. W.; Gu, Q. T.; Xu, D.; Wei, H. Z.; Yu, J. Z. Optics and Lasers in Engineering. 2000, 33, 21. 82. Kuo, M. J.; Tung, Y. C.; Yeh, C. L.; Chang, H. Y.; Jeng, R. J.; Dai, S. A. Macromolecules. 2008, 10.1021/ma801889x. 83. Vaia, R. A.; Sauer, B. B.; Tse, O. K.; Giannelis, E. P. J. Polym. Sci. Part B:Polym. Phys. 1997, 35, 59. 84. Noh, M. W.; Lee, D. C. Polym. Bullet. 1999, 42, 619. 85. Chang, H. L.; Lin, H. L.; Wang, Y. C.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polymer. 2007, 48, 2046. 86. Beckers, E. H. A.; Mesker, S. C. J.; Schenning, A. P. H.; Chen, Z.; Wurthner, F.; Marsal, P.; Beljonne, D. Cornil, J.; Janssen, R. J. J. Am. Chem. Soc. 2006, 128, 649. 87. Liu, J. G.; Li, Z. X.; Wu, J.T.; Zhou,H.W.; Wang,F.S.; Yang,S.Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1583. 88. Park, J. C.; Park, D. J.; Son, K. C.; Kim, Y. B. Mol. Cryst. Liq. Cryst. 2007, 479, 191. 89. Liu, Z.; Yu, F.; Zhang, Q.; Zeng, Y.; Wang, Y. Europe. Polym. J. 2008, 44, 2718. 90. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Yang, L.; Wei, Y. J. Am. Chem. Soc. 2004, 126, 15180. 91. Datta, A.; Pati, S. K. J. Phys. Chem. A. 2004, 108, 320. 92. Juang , T. Y. ; Chen , Y. C.; Tsai , C. C. Appl. Clay Science .2010,48 ,103 93. 吳天豪,國立中興大學化學工程學系碩士論文, 2010。 94. Yang, C. P.;Chen, Y. C. J Appl Polym Sci. 2005, 96, 2399.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3854-
dc.description.abstract好的有機NLO光電材料須具備高的光電係數以及長時間熱穩定性兩大重要需求。本實驗方向是探討其自組裝之機制,將構築單元4-isocyanato-4’(3,3-dimethylazetidine-2,4-dione)diphenylmethane (IDD)當作核心與發色團基 (DR1)和十八長碳鏈 ( stearyl-group )製備出不同代數之雙并型末端官能基樹枝狀有機黏土奈米複合材料,與先前本實驗室以IDD為構築單元,末端皆為發色團基 (DR1)之樹枝狀有機黏土奈米複合材料比較,探討其光電性質之差異。 本研究首先利用IDD中之-NCO官能基與 (DR1和Stearyl Alcohol) 中之-OH 官能基進行加成反應產生urethane 鍵結,形成G0.5。之後,再將IDD中之azetidine-2,4-dione 官能基與一級胺 (diethylenetriamine;DETA) 開環反應形成 malonamide 鍵結 (G1),反覆進行加成與開環步驟可得到高代數之雙并型末端官能基樹枝狀分子,將各代數之樹枝狀分子進行結構鑑定。整數代 (G1、G2、G3) 之樹枝狀分子以離子交換方式導入蒙脫土層板間形成有機黏土的奈米複合材料,其層間距分別為57 Å、脫層、以及脫層狀態。再將有機黏土奈米複合材料與高熱性質、高成膜性之聚亞醯胺以10 wt%、20 wt%進行物理混摻,形成具有自組裝排列行為的奈米複合材料,並利用solvent casting方式製備具非中心對稱排列之光學薄膜。利用樹枝狀結構以及導入具有阻隔效應的團基長碳鏈,隨著代數成長具有明顯之阻隔效應 (site-isolation effect) 之因素,於高代數、高濃度之奈米複材下,減少聚集現象的產生,增加其非線性光學係數以及良好成膜等特性。 結果發現導入十八長碳鏈 ( stearyl-group )團基在樹枝狀分子結構中,能有效強化阻隔效應(site-isolation effect),因此可以達到較佳之光電性質表現。 為了比較不同構築單元IDD以及1-(4-isocyanatophenyl)-3,3-dimethylazetidine-2,4-dione (IPDA)在相同代數末端具有雙并型末端官能基之結構差異性,進一步進行合成以及探討之間光電性。zh_TW
dc.description.abstractIn this study, a bifunctional building block compound,4-isocyanato- 4’(3,3-dimethylazetidine-2,4-dione)diphenylmethane (IDD) was used as a building block to synthesize a series of novel polyurethane/malonamide dendrons with two alternating peripheral functional groups (azobenzene chromophore and stearyl group) via a convergent route. All of the dendrons (G1, G2, G3,) exhibited structural characteristics with secondary amines located on one end. With this feature, the amine salt was easily formed by the addition of hydrochloric acid. Subsequently, the amine salt proceeded to ion-exchange with Na+-MMT. By respective incorporation of the different generations of dendrons onto layered MMT, the interlayer distance of the intercalated hybrid could be precisely controlled to form a unique structure with the possibility of self-assembly. These dendrons (G1、G2 and G3) with peripheral chromophore-atlternating-stearyl group were utilized to intercalate layered silicates, resulting in a large d-spacings of 57Å or exfoliation morphology. After blending the organoclays with a high glass transition temperature (Tg) polyimide (Tg, 271 oC), respectively, the interactions between the hydrogen bond-rich dendrons and polyimide in the layered confinement resulted in ordered morphology, i.e. optical nonlinearity. Furthermore,we also synthesized a rather rigid building block, 1-(4-isocyanatophenyl)-3,3-dimethylazetidine-2,4-dione (IPDA) for the sake of comparisonzh_TW
dc.description.tableofcontents致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XIII 符號縮寫對照表 (Abbriation) XIV 一、緒論 1 1.1 前言 1 1.2 二次非線性光學現象與應用 2 二、文獻回顧與研究動機 6 2.1有機非線性光學高分子材料與類型 6 2.1.1賓主型高分子 (guest-host polymers) 7 2.1.2側鏈型高分子 (side-chain polymers) 8 2.1.3主鏈型高分子 (main-chain polymers) 12 2.1.4交聯型高分子 (cross-linked polymers) 14 2.1.5樹枝狀型二次非線性光學材料 14 2.1.6超樹枝狀型二次非線性光學材料 16 2.2規則樹枝狀分子(Dendrimer)簡介 16 2.2.1 Dendrimer與線性分子之差別 18 2.2.2 Dendrimer 含NLO材料之文獻回顧 19 2.2.3利用反應選擇性製備樹枝狀分子之策略 25 2.3 蒙脫土奈米複合材料 26 2.3.1 蒙脫土之簡介 26 2.3.2 蒙脫土/高分子奈米複合材料之分散型態 27 2.3.3 蒙脫土/樹枝狀材料之文獻回顧 28 2.3.4 蒙脫土/二次非線性樹枝狀光學材料之文獻回顧 32 2.4 研究動機與目的 37 三、實驗內容 39 3.1 實驗流程圖 39 3.2 實驗概述 39 3.3 化學藥品 41 3.4 有機溶劑 44 3.5 實驗儀器 46 3.6 其他儀器 48 3.7 實驗部份IDD-D Series 49 3.7.1 構築單元IDD之單體合成 49 3.7.2 規則樹枝狀分子 (G0.5~G3) 合成 50 3.7.3 等當量樹枝狀分子 (IDD-D Series) /蒙脫土有機黏土製備 56 3.7.4 聚亞醯胺之合成[94] 58 3.7.5 等當量有機黏土/聚亞醯胺奈米複合材料之製備 61 3.8 實驗部份IPDA-D Series 62 3.8.1構築單元IPDA之單體合成 62 3.8.2規則樹枝狀分子 (G0.5~G3) 合成 63 3.8.3等當量樹枝狀分子 (G1、G2、G3) /蒙脫土有機黏土製備 67 3.8.4等當量有機黏土/聚亞醯胺奈米複合材料之製備 68 3.9 光學性質檢測 68 3.9.1 高分子薄膜製備 68 3.9.2 波克效應之檢測原理[76-79] 68 3.9.3 光電係數 (Electro-optic coefficient) 之量測 69 3.9.4 Optical loss之量測 70 四、結果與討論 72 4.1 構築單元 IDD 之製備與鑑定 72 4.2 含樹枝狀分子之二次非線性光學材料 74 4.2.1 IDD-D Series各代數G0.5~G3之製備與鑑定 74 4.2.2 樹枝狀分子之熱性質分析 89 4.2.3 兩系列樹枝狀分子之溶解度之分析 92 4.3 聚亞醯胺之製備與鑑定 92 4.4 IDD-D Series樹枝狀有機黏土及其自組裝行為 95 4.4.1 樹枝狀分子之有機黏土改質 95 4.4.2 不同當量G3MMT插層行為 102 4.4.3 等當量有機黏土/聚亞醯胺複合材料之製備及其物理性質 105 4.4.4 等當量奈米複合材光學性質分析 109 4.4.5 等當量奈米複合材料之自組裝行為分析 112 4.4.6 純有機黏土之自組裝行為與光電系數值探討 118 4.5 構築單元 IPDA 之製備與鑑定 121 4.6 IPDA-D Series樹枝狀分子之二次非線性光學材料 122 4.6.1 樹枝狀分子 (G0.5~G3) 之製備與鑑定 122 4.6.2 樹枝狀分子之熱性質分析 137 4.6.3 兩系列樹枝狀分子之溶解度之分析 139 4.7 IPDA-D series有機黏土及其自組裝行為 140 4.7.1 樹枝狀分子之有機黏土改質 140 4.7.2 等當量有機黏土/聚亞醯胺複合材料之製備及其物理性質 148 4.7.3 等當量奈米複合材光學性質分析 152 4.8 不同構築單元在相同與不相同末端官能基下光電性質比較 154 4.9 不同構築單元之自組裝行為比較 155 五、結論 158 六、參考文獻 159zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201110304400en_US
dc.subjectNLOen_US
dc.subject二次非線性光學zh_TW
dc.subjectdendronen_US
dc.subjectsite-isolationen_US
dc.subjectMMTen_US
dc.subject樹枝狀高分子zh_TW
dc.title兩并型末端官能基之規則樹枝狀分子製備及其在光電上之研究zh_TW
dc.titleSynthesis of Dendrons with Two Alternating Peripheral Functional Groups and Their Applications in Electro-Opticsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.