Please use this identifier to cite or link to this item:
標題: 超音波輔助雙活性基相間轉移觸媒在固-液相系統催化酯化合成對-羥基苯甲酸苯甲酯之研究
Synthesis of Benzyl 4-Hydroxybenzoate by Ultrasound-Assisted Phase-Transfer Catalysis with Dual-Site Phase-Transfer Catalyst in Solid-liquid System
作者: 朱韋名
Chu, Wei-Ming
關鍵字: Dual-site phase-transfer catalyst;雙活性基相間轉移觸媒;Solid-liquid phase;Sonochemistr;固-液相;超音波化學
出版社: 化學工程學系所
引用: [1] J. Jarrouse, “The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives,'' C.R Heabd. Seances Acad. Sci, C232,1424 (1951) [2] C.M. Starks, “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts,” J. Am. Chem. Soc., 93 (1971) 195-199. [3] L. J. Mathias, R. A. Vaidya, “Inverse Phase Transfer Catalysis. First report of a new class of interfacial reactions”, J. Am. Chem. Soc., 108 (1986) 1093-1094. [4] P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts” , J. Am. Chem. Soc. , Vol. 101 (1979) 6606-6613. [5] S.L. Regen, J.J. Besse, J. Mcliick, “Solid Phase Cosolvent Triphase Catalytic Hydrolysis of 1-Bromoadamantane”, J. Am. Chem. Soc., 101 (1979) 166-120. [6] L.K. Doraiswamy, S. Desikanl, “Enhanced Activity of Polymer-Supported Phase Transfer Catalysts”, Chemical Engineering Science, 55 (2000) 6119-6127. [7] H. M. Yang, C. C. Huang, “Green Conversion of Phenolic Compound to Benzoate Over Polymer-Supported Phase-Transfer Catalysts”, Catalysis Letters, 128 (2009) 235-242. [8] R. Neumann, Y. Sasson, “Mechanism of Base Catalyzed Reactions in Phase-Transfer Systems with Poly(ethylene glycols) as catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451. [9] H. M. Yang, C. C. Huang, “Kinetics for benzoylation of sodium 4-acetylphenoxide via third-liquid phase in the phase-transfer catalysis,” Applied Catalysis A: General 290 (2005) 65-72. [10] H. M. Yang, C. C. Li, “Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis”, Journal of Molecular Catalysis A:Chemical, 246 (2006) 255-262. [11] H. M. Yang, C. C. Chiu, “Ultrasound-assisted phase-transfer catalysis: Benzoylation of sodium 4-acetylphenoxide by dual-site phase-transfer catalyst in a tri-liquid system”, Ultrasonics Sonochemistry 18 (2011) 363-369. [12] A.W. Herriott, D. Picker, “Phase transfer catalysis. An evaluation of catalysts”, J. Am. Chem. Soc. 97 (1975) 2345-2349. [13] A. Brandstrom, “Preparative Ion Pair Extraction, An Introduction to Theory and Pratice”, Apotekarsocieteten / Hassle, Lakemedel, Sweden (1974) 139-148. [14] M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, “Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of a-alkyl-a-amino acids”, Tetrahedron Letters 49 (2008) 2026-2030. [15] J. H. Lee, M. S. Yoo, J. H. Jung, S. S. Jew, H. G. Parka, B. S. Jeongb, “Polymeric chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids”, Tetrahedron 63 (2007) 7906-7915. [16] E. Murugan, A. Sivab, “Preparation of a novel soluble multi-site phase transfer catalyst and the kinetic study for the C-alkylation of α-pinene”, Journal of Molecular Catalysis A: Chemical 235 (2005) 220-229. [17] P.A. Vivekanand, T. Balakrishnan, “Superior catalytic efficiency of a new multi-site phase transfer catalyst in the C-alkylation of dimedone -A kinetic study”, Catalysis Communications 10 (2009) 1371-1375. [18] M. L. Wang, Y. M. Hsieh, “Kinetic study of dichlorocyclopropanation of 4-vinyl-1-cyclohexene by a novel multisite phase transfer catalyst”, Journal of Molecular Catalysis A: Chemical 210 (2004) 59-68. [19] A. Siva, E. Murugan, “Synthesis and characterization of novel multi-site phase transfer catalyst and its catalytic efficiency for dichlorocarbene addition to citral”, Journal of Molecular Catalysis A: Chemical 241 (2005) 101-110. [20] C. L. Liotta, H. P. Harris, “The Chemistry of “Naked” Anions. I. Reactions of the 18-Crown-6 Complex of Potassium Fluoride with Organic Substrates in Aprotic Organic Solvents ”, J. Am Chem. Soc. 96 (1974) 2250. [21] M. Fedorynski, K. Wojciechowski, Z. Matacz, M. Makosza, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems” , J. Org. Chem., Vol. 43, No. 24, (1978), 4682. [22] D. Montanari, F. Landini, F. Rolla, Top. Curr. Chem. 101 (1982) 147. [23] D. Mason, S. Magdassi, Y. Sasson, “Role of Third Liquid Phase in Phase Transfer Catalysis”, J. Org. Chem. 56 (1991) 7229. [24] S. D. Naik, L. K. Doraiswamy, “Mathematical Modeling of Solid-Liquid Phase Transfer Catalysis”, Chem. Eng. Sci. Vol. 52, No. 24, (1997) 4553-4546. [25] S. S. Yufit, G. V. Kryshtal, I. A. Esikova, “Adsorption on Interfaces and Solvation in Phase-Transfer Catalysis”, America Chemical Society (1997) 52-67. [26] H. M. Yang, P. I. Wu, “Kinetics of phase-transfer catalyzed esterification of aliphatic dicarboxylate in solid-liquid system”, Applied Catalysis A: General 209 (2001) 17-26. [27] H. M. Yang, H. C. Liu, “Kinetics for synthesizing benzyl salicylate via solid-liquid phase-transfer catalysis”, Applied Catalysis A: General 258 (2004) 25-31. [28] B. Leska, R. Pankiewicz, G. Schroeder, A. Maia, “A new type of B-podand catalysts for solid-liquid phase transfer reactions”, Tetrahedron Letters 47 (2006) 5673-5676. [29] V. G. Devulapelli, H. S. Weng, “Synthesis of cinnamyl acetate by solid-liquid phase transfer catalysis: Kinetic study with a batch reactor”, Catalysis Communications 10 (2009) 1638-1642. [30] H. A. Zahalka, Y. Sasson, “The Key Role of Water in Solid-Liquid Phase Transfer-Catalyzed Substitution Reactions”, J. Chem. Soc. Chem. Commun. (1984) 1652-1654. [31] C.M. Starks, C.L. Loitta, M. Halpern, “Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall” , New York (1994). [32] C. L. Liotta, E. N. Burgess, C. Ray, “Mechanism of Phase-Transfer Catalysis: the omega phase, in ACS Synposium Series, Phase-Transfer Catalysis (ed. C. M. Starks)”, Am. Chem. Soc., Wash. DC (1987) 15-23. [33] J. B. Melville, J. D. Goddard, “A Solid-Liquid Phase-Transfer Catalysis in Rotating-Disk Flow”, Ind. Eng. Chem. Res. 27 (1988) 511. [34] G. Maerker, J.F. Carmichael, W.S. Port, “Glycidl Ester Method of preparation and study of Some reaction Variables” , J. Org. Chem., 26 (1961) 2681-2688. [35] H. E. Hennis, J. P. Easterly, L. R. Collins, L. R. Thompson, “Esters from Reactions of Alkyl Halides and Salts of Carboxylic Acids. Reactions of Primary Alkyl Chlorides and Sodium Salts of Carboxylic Acids”, Ind. Eng. Chem. Prod. Res. Dev., 6 (1967) 193-195. [36] H. M. Yang, Y. S. Huang, “Green benzylation of sodium salicylate by phase-transfer catalysis with third-liquid phase in a continuous two-phase-flow reactor”, Journal of the Taiwan Institute of Chemical Engineers 42 (2011) 265-270. [37] J.L. Louis, “Synthetic organic sonochemistry”, Plenum Press, New York and London. [38] O. Bologa, I. Crudu, “Cavitation, Tribosystems and Cavitation Tribomodels”, The Annals of University “DUNĂREA DE JOS” of GALAŢI FASCICLE VIII, 2002, ISSN 1221-4590 Tribology. [39] L. Rayleigh, “On the pressure developed in a liquid during the collapse of spherical cavity”, Philos. Mag. 34 (1917) 94-98. [40] CAVITATION SICKNESS, [41] K. S. Suslick, “The Chemical Effects Of Ultrasound”, Scientific American, 260 (1989) 80-86. [42] K. Yasui, T. Tuziuti, Y. Iida, “Dependence of the characteristics of bubbles on types of sonochemical reactors”, Ultrasonics Sonochemistry 12 (2005) 43-51. [43] N. S. Nandurkar, M. J. Bhanushali, S. R. Jagtap, B. M. Bhanage, “Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst”, Ultrasonics Sonochemistry, 14 (2007) 41-45. [44] J. T. Li, X. L. Li, “An efficient and practical synthesis of methylene dioximes by combination of ultrasound and phase transfer catalyst”, Ultrasonics Sonochemistry 14 (2007) 677-679. [45] H. Xu, Y. Chen, “An efficient and practical synthesis of mandelic acid by combination of complex phase transfer catalyst and ultrasonic irradiation”, Ultrasonics Sonochemistry 15 (2008) 930-932. [46] Q. Hua, L. Dabin, L. Chunxu, “Ultrasonically-promoted synthesis of mandelic acid by phase transfer catalysis in an ionic liquid”, Ultrasonics Sonochemistry (2011). [47] H. M. Yang, G. Y. Peng, “Ultrasound-assisted third-liquid phase-transfer catalyzed esterification of sodium salicylate in a continuous two-phase-flow reactor”, Ultrasonics Sonochemistry, 17 (2010) 239-245.
操作變數包括不同攪拌速率、不同觸媒量、不同水量、不同有機相反應物添加量、不同有機溶劑、不同觸媒、不同溫度和鹽類效應等變因作催化反應探討。在本系統中,攪拌速率250 rpm時產率有最大值,超過250 rpm則因整體溶液飛濺於瓶壁上造成反應物殘留於瓶壁使得產率下降。而添加微量的水也能有效的提升產率;當完全不添加水時反應30分鐘後產率僅3.7%,若於系統中添加1毫升去離子水則可使產率在反應30分鐘後大幅提升至84.32%。當使用高極性的溶劑如甲基異丁基酮會有最佳的催化效果,使用微極性或無極性的溶劑如甲苯與正庚烷時產率較低或幾乎無產物生成,顯示溶劑極性的高低對產率影響很大。在與一般單活性基之商業觸媒比較時,可發現自行合成之雙活性基觸媒有較佳的催化效果,Kapp視反應速率常數約為溴化四丁基銨的1.5倍。
在反應機制上,觸媒中間體與有機相反應物所進行的本質反應發生在固-液界面與有機相的界面處。反應過程中隨著產物對-羥基苯甲酸苯甲酯的生成,則同時有副產物溴化鈉鹽類的生成,其實驗結果可用虛擬一階線性方程式-ln(1-Y)=Kappt表示之,式中Kapp為視反應速率常數。於超音波頻率28 kHz、超音波功率300 W及攪拌速率250 rpm、溫度60˚C條件下,在不添加觸媒時反應30分鐘僅能達到12.04%的產率,而若添加0.5毫莫耳的觸媒氯化4,4’-二(三丁基銨基甲基)-1,1’-聯苯則可使產率提升至84.32%。系統中以固體反應物為限量試劑,過量添加有機相反應物可使反應速率提升,添加過量15倍的溴化苯甲基時系統達最高產率;超音波及攪拌同時輔助才能使系統達到催化的效果。以甲基異丁酮為溶劑在超音波輔助下經Arrhenius方程式計算可得活化能為24.05 kcal/mol。
其他識別: U0005-0407201117570100
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.