Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChang, Chih-Kaien_US
dc.identifier.citation[1] F. Gloaguen, J.M. LE&acute; GER, C. Lamy, Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates, J. Appl. Electrochem., 27 (1997) 1052-1060. [2] A. Arico, S. Srinivasan, V. Antonucci, DMFCs: from fundamental aspects to technology development, Fuel cells, 1 (2001) 133-161. [3] K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells, J. Mater. Chem., 14 (2004) 505-516. [4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta, 47 (2002) 3663-3674. [5] Y.H. Hong, Y.C. Tsai, Electrodeposition of platinum and ruthenium nanoparticles in multiwalled carbon nanotube-nafion nanocomposite for methanol electrooxidation, Journal of Nanomaterials, 2009 (2009). [6] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110 (2010) 132. [7] L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon, 48 (2010) 781-787. [8] Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochem. Commun., 11 (2009) 846-849. [9] Y. Xin, J. Liu, Y. Zhou, W. Liu, J. Gao, Y. Xie, Y. Yin, Z. Zou, Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell, J. Power Sources, 196 (2011) 1012-1018. [10]Y. Lin, X. Cui, C.H. Yen, C.M. Wai, PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells, Langmuir, 21 (2005) 11474-11479. [11] B. Cang&uuml;l, L. Zhang, M. Aindow, C. Erkey, Preparation of carbon black supported Pd, Pt and Pd–Pt nanoparticles using supercritical CO< sub> 2</sub> deposition, The Journal of Supercritical Fluids, 50 (2009) 82-90. [12] H.J. Kim, S.M. Choi, M.H. Seo, S. Green, G.W. Huber, W.B. Kim, Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst, Electrochem. Commun., (2011). [13] S.M. Choi, M.H. Seo, H.J. Kim, W.B. Kim, Synthesis of surface functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation, Carbon, (2010). [14] Y.C. Tsai, Y.H. Hong, Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation, J. Solid State Electrochem., 12 (2008) 1293-1299. [15] C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra, M. Pasquali, Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation, J. Power Sources, 183 (2008) 84-91. [16] 鄭雅堂, 燃料電池發電技術, 汽電共生報導第十四期, 第 17-25 頁, 民國 87 年, (1998). [17] J. Larminie, A. Dicks, K. . Fuel cell systems explained, (2003). [18] 高漢昌, 利用逆微胞法製備直接甲醇燃料電池 PtRu 奈米陽極觸媒之研究, (2007). [19] 楊志忠, 林頌恩, 韋文誠, 燃料電池的發展現況, in, 科學發展, 2003. [20] 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 燃料電池論文集, 經濟部能源委員會, pp15, 27 (1999). [21] A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. Today, 38 (1997) 445-457. [22] H. Dohle, J. Divisek, R. Jung, Process engineering of the direct methanol fuel cell, J. Power Sources, 86 (2000) 469-477. [23] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E. Gilles, Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis, Chem. Eng. Sci., 56 (2001) 333-341. [24] L. Carrette, K. Friedrich, U. Stimming, Fuel cells–fundamentals and applications, Fuel cells, 1 (2001) 5-39. [25] M.P. Hogarth, T.R. Ralph, Catalysis for Low Temperature Fuel Cells, Platinum Met. Rev., 46 (2002) 146-164. [26] O. Khazova, A. Mikhailova, A. Skundin, E. Tuseeva, A. Havranek, K. Wippermann, Kinetics of Methanol Oxidation on Supported and Unsupported Pt/Ru Catalysts Bonded to PEM, Fuel cells, 2 (2002) 99-108. [27] A. Ocampo, M. Miranda-Hernandez, J. Morgado, J. Montoya, P. Sebastian, Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance, J. Power Sources, 160 (2006) 915-924. [28] Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diamond Relat. Mater., 13 (2004) 1764-1770. [29] J. Ding, K.Y. Chan, J. Ren, F. Xiao, Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions, Electrochim. Acta, 50 (2005) 3131-3141. [30] K.W. Park, D.S. Han, Y.E. Sung, PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells, J. Power Sources, 163 (2006) 82-86. [31] Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, Y. Nishina, High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem. Phys. Lett., 294 (1998) 593-598. [32] F. Alcaide, G. &Aacute;lvarez, P.L. Cabot, H.-J. Grande, O. Miguel, A. Querejeta, Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells, Int. J. Hydrogen Energy, 36 (2011) 4432-4439. [33] B. Grgur, N. Markovic, P. Ross, Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys, Electrochim. Acta, 43 (1998) 3631-3635. [34] E.M. Crabb, R. Marshall, D. Thompsett, Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry, J. Electrochem. Soc., 147 (2000) 4440. [35] J. Luo, P.N. Njoki, Y. Lin, L. Wang, C.J. Zhong, Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen, Electrochem. Commun., 8 (2006) 581-587. [36] D.R. Rolison, P.L. Hagans, K.E. Swider, J.W. Long, Role of Hydrous Ruthenium Oxide in Pt−Ru Direct Methanol Fuel Cell Anode Electrocatalysts:  The Importance of Mixed Electron/Proton Conductivity, Langmuir, 15 (1999) 774-779. [37] T. Yajima, H. Uchida, M. Watanabe, In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt−Ru Alloy, The Journal of Physical Chemistry B, 108 (2004) 2654-2659. [38] Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell, The Journal of Physical Chemistry B, 108 (2004) 8234-8240. [39] 盧敏彥、張美元、廖怡萱、黃俊傑, 直接甲醇燃料電池電極觸媒, 工業材料雜誌, 196 期 (1993). [40] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 155 (2006) 95-110. [41] L. Jiang, G. Sun, X. Zhao, Z. Zhou, S. Yan, S. Tang, G. Wang, B. Zhou, Q. Xin, Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells, Electrochim. Acta, 50 (2005) 2371-2376. [42] J. Prabhuram, T. Zhao, Z. Tang, R. Chen, Z. Liang, Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells, The Journal of Physical Chemistry B, 110 (2006) 5245-5252. [43] S.H. Lee, N. Kakati, S.H. Jee, J. Maiti, Y.S. Yoon, Hydrothermal synthesis of PtRu nanoparticles supported on graphene sheets for methanol oxidation in direct methanol fuel cell, Mater. Lett., (2011). [44] 胡耀娟, 金娟, 张卉, 吴萍, 蔡称心, 石墨烯的制备, 功能化及在化学中的应用, 物理化学学报, 2 (2010) 2073. [45] H.W. Kroto, C60 Buckminsterfullerene, in, vol. 206, Cambridge Univ Press, 1990. [46] S. Iijima, Helical microtubules of graphitic carbon, nature, 354 (1991) 56-58. [47] J. Wang, M. Musameh, Y. Lin, Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors, J. Am. Chem. Soc., 125 (2003) 2408-2409. [48] P. Wallace, The band theory of graphite, Physical Review, 71 (1947) 622. [49] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [50] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9 (2008) 30-35. [51] M.W.K. Nomani, R. Shishir, M. Qazi, D. Diwan, V. Shields, M. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC, Sensors and Actuators B: Chemical, 150 (2010) 301-307. [52] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud''homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B, 110 (2006) 8535-8539. [53] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 15 (2005) 974-978. [54] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339. [55] G.K. Ramesha, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study, The Journal of Physical Chemistry C, 113 (2009) 7985-7989. [56] M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, The Journal of Physical Chemistry C, 114 (2010) 6426-6432. [57] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Environment-friendly method to produce graphene that employs vitamin C and amino acid, Chem. Mater., 22 (2010) 2213-2218. [58] J. Zhang, H. Yang, G. Shen, P. Cheng, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun., 46 (2010) 1112-1114. [59] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002. [60] D.R. Crow, Principles and applications of electrochemistry, CRC, 1994. [61] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley New York, 1980. [62] J. Wang, Analytical electrochemistry, Vch Verlagsgesellschaft Mbh, 2006. [63] M.A.B. Christopher, A.N.A.M.O. BRETT, A.M.O. Brett, Electrochemistry: Principles, Methods, and Applications, Departamento de Quimica, Universidade de Coimbra, Portugal Oxford New York Tokyo OXFORD UNIVERSITY, (1993). [64] [65], [66], [67] J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide, Langmuir, 25 (2009) 5957-5968. [68] C.T. Hsieh, J.M. Wei, J.S. Lin, W.Y. Chen, Pulse electrodeposition of Pt nanocatalysts on graphene-based electrodes for proton exchange membrane fuel cells, Catal. Commun., (2011). [69] W. Li, A.M. Lane, Resolving the HUPD and HOPD by DEMS to determine the ECSA of Pt electrodes in PEM fuel cells, Electrochem. Commun., (2011). [70] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry, J. Power Sources, 105 (2002) 13-19. [71] C.S. Liao, C.T. Liao, C.Y. Tso, H.J. Shy, Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites, Mater. Chem. Phys., (2011). [72] A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes, J. Electroanal. Chem., 444 (1998) 41-53. [73] M.-C. Tsai, T.-K. Yeh, C.-H. Tsai, Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation, Mater. Chem. Phys., 109 (2008) 422-428. [74] X. Peng, K. Koczkur, S. Nigro, A. Chen, Fabrication and electrochemical properties of novel nanoporous platinum network electrodes, Chem. Commun., (2004) 2872-2873. [75] C.C. Yang, T. Wu, H.R. Chen, T.H. Hsieh, K.S. Ho, C.W. Kuo, Platinum Particles Embedded into Nanowires of Polyaniline Doped With Poly (Acrylic Acid-co-Maleic Acid) as Electrocatalyst for Methanol Oxidation, Int. J. Electrochem. Sci, 6 (2011) 1642-1654.zh_TW
dc.description.abstract本研究成功的使用電化學沉積法將鉑(Pt)、鉑釕(PtRu)奈米觸媒還原於石墨烯(Reduced graphene oxide,RGO)載體上,形成石墨烯-Pt(RGO-Pt)、石墨烯-PtRu (RGO-PtRu)奈米複合薄膜,作為直接甲醇燃料電池陽極材料。並使用場發射式掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM)、穿透式電子顯微鏡(Transmission electron microscope,TEM)兩種儀器對於其微觀的表面形貌作鑑定,再使用X光能量散譜儀(X-ray energy dispersive spectrometer,EDS)作元素分析。 將製備完成後RGO-Pt陽極觸媒材料修飾於玻璃碳電極上(RGO-Pt/GCE)在0.5 M硫酸及2 M甲醇和1 M硫酸混合溶液中探討其電化學活性面積(Electrochemically active surface area,ECSA)和對甲醇的氧化性及穩定性,並和奈米碳管(MWCNT)載體比較,得知其擁有較大的ECSA及較良好的甲醇電氧化活性及穩定性。之後增加釕(Ru)的使用,並改變鉑釕(PtRu)前驅物的濃度比,還原沉積出不同原子比的鉑釕(PtRu)金屬觸媒於RGO薄膜上,且在2 M甲醇和1 M硫酸混合溶液中探討其對甲醇的氧化活性,結果顯示在鉑釕(PtRu)原子比1.2:1時擁有最佳的甲醇氧化活性。並探討RGO-PtRu/GCE對甲醇氧化電活性的穩定性。最後,使用阻抗光譜分析法(Electrochemical impedance spectroscopy,EIS)更進一步探討RGO-PtRu/GCE對甲醇氧化的電化學特性。zh_TW
dc.description.abstractIn this report , platinum and platinum-ruthenium nanoparticles were successfully deposited on graphene. The resulting Pt and PtRu nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The RGO-Pt modified glassy carbon electrode (RGO-Pt/GCE) had a sharp hydrogen desorption peak at about -0.2 V vs. Ag/AgCl in a solution of 0.5 M H2SO4. In comparison with MWCNT-Pt modified glassy carbon electrode (MWCNT-Pt/GCE), the RGO-Pt/GCE showed high value of ECSA and had excellent electrocatalytic activity toward the methanol oxidation. The electrocatalytic properties of RGO-PtRu/GCE for methanol electrooxidation was investigated by cyclic voltammetry in 2 M CH3OH + 1 M H2SO4 solution. The RGO-PtRu/GCE exhibited a higher If/Ib value and a better stability than RGO-Pt/GCE. The PtRu bimetallic catalyst with 1.2 : 1 atomic ratio showed better electrocatalytic activity towards the methanol electrooxidation. Furthermore, electrochemical impedance spectroscopy (EIS) was also investigated the activity of these electrodes during methanol oxidation in this system.en_US
dc.description.tableofcontents中文摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 燃料電池簡介 2 1-2-1 燃料電池的發展 2 1-2-2 燃料電池的特點 3 1-2-3 燃料電池的種類 4 1-3 直接甲醇燃料電池 6 1-3-1 直接甲醇燃料電池基本原理及構造 6 1-3-2 甲醇在陽極的反應途徑及毒化問題 8 1-4 製備陽極電催化觸媒層奈米金屬微粒 10 1-4-1 奈米粒徑觸媒的合成方法 10 1-4-2 高比表面積的碳載體開發 17 1-5 石墨烯(Graphene) 21 1-5-1 石墨烯簡介 21 1-5-2 石墨烯的製備 22 1-5-3 石墨烯的運用 27 1-6 電化學原理與方法 28 1-6-1 循環伏安法原理(Cyclic voltammetry, CV)29 1-6-2 安培法原理(Amperometry)31 1-6-3 交流阻抗法(Impedance)32 1-7 微結構分析 33 1-7-1 場發射掃描式電子顯微鏡 34 1-7-2 穿透式電子顯微鏡 35 第二章 實驗方法與步驟 36 2-1 實驗藥品 36 2-2 藥品配置 36 2-3 實驗儀器 37 2-4 實驗步驟 38 2-4-1 石墨烯氧化物(Graphene oxide,GO)的製備與還原 38 2-4-2 電極前處理 38 2-4-3 RGO薄膜修飾電極製備 39 2-4-4 RGO-Pt電催化觸媒層電極製備及實驗步驟 40 2-4-5 RGO-PtRu電催化觸媒層電極製備及實驗步驟 42 第三章 結果與討論 44 3-1 石墨烯氧化物(Graphene oxide,GO)之探討 44 3-1-1 場發射式掃描式電子顯微鏡 45 3-1-2 穿透式電子顯微鏡 46 3-1-3 原子力顯微鏡 47 3-1-4 紫外光/可見光(UV-Vis)吸收光譜圖 48 3-1-5 X光光電子能譜 50 3-1-6 電化學測試 52 3-2 RGO-Pt陽極觸媒材料於甲醇燃料電池的探討 53 3-2-1 電化學沉積鉑(Pt)於石墨烯(RGO)薄膜的微結構探討 53 3-2-2 RGO-Pt陽極觸媒材料之電化學特性探討 60 3-2-3 RGO-Pt陽極觸媒材料對於甲醇氧化的電活性探討 62 3-2-4 RGO-Pt陽極觸媒材料穩定性探討 69 3-3 RGO-PtRu陽極觸媒材料於甲醇燃料電池的探討 70 3-3-1 電化學沉積鉑釕(PtRu)於石墨烯(RGO)薄膜的微結構探討 70 3-3-2 RGO-PtRu陽極觸媒材料對於甲醇氧化的電活性探討 76 3-3-3 RGO-PtRu陽極觸媒材料穩定性探討 81 3-3-4 利用阻抗光譜分析法探討RGO-PtRu陽極觸媒材料的甲醇氧化電活性 82 第四章 結論及未來展望 84 4-1 結論 84 4-2 未來展望 84 第五章 參考文獻 85zh_TW
dc.titleElectrochemical deposition of platinum and platinum-ruthenium nanoparticles on graphene for methanol electrooxidationen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.