Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3876
標題: 酵素催化合成4′-OH乙醯化白藜蘆醇-最適化與動力學探討
Lipase Catalyzed Synthesis of 4'-O-Acetyl Resveratrol - Optimization and Kinetics Study
作者: 蕭芳雯
Hsiao, Fang-Wen
關鍵字: acylation;白藜蘆醇;resveratrol;lipase;kinetic;transesterification;response surface methodology;脂解酵素;醋酸乙烯酯;抗氧化;乙醯化;反應曲面法
出版社: 化學工程學系所
引用: 1. Chen, Q., Shi, H., and Ho, C.T., Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. Journal of the American Oil Chemists'' Society, 1992. 69: p. 999-1002. 2. Lopez Giraldo, L.J., Laguerre, M., Lecomte, J., Figueroa-Espinoza, M.C., Barouh, N., Barea, B., and Villeneuve, P., Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme and microbial technology, 2007. 41: p. 721-726. 3. Takaoka, MJ Of the Phenolic substances of White Hellebore(Veratum grandiflorum Loes.fil.). J. Faculty Sci. Hokkaido Imperial University, 19401-16. 4. Orallo, F., Alvarez, E., Camina, M., Leiro, J.M., Gomez, E., and Fernandez, P., The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Molecular pharmacology, 2002. 61: p. 294. 5. Tosun, I. and Inkaya, A.N., Resveratrol as a Health and Disease Benefit Agent. Food Reviews International, 2010. 26: p. 85-101. 6. Shukla, Y. and Singh, R., Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 2011. 1215: p. 1-8. 7. Fragopoulou, E., Nomikos, T., Karantonis, H.C., Apostolakis, C., Pliakis, E., Samiotaki, M., Panayotou, G., and Antonopoulou, S., Biological activity of acetylated phenolic compounds. Journal of agricultural and food chemistry, 2007. 55: p. 80-89. 8. Gelo Pujic, M., Desmurs, J.R., Delaire, S., Adao, A., and Tawil, D., Synthesis of new antioxidant conjugates and their in vitro hydrolysis with Stratum corneum enzymes. International journal of cosmetic science, 2008. 30: p. 195-204. 9. Nicolosi, G., Spatafora, C., and Tringali, C., Chemo-enzymatic preparation of resveratrol derivatives. Journal of Molecular Catalysis B: Enzymatic, 2002. 16: p. 223-229. 10. Cardile, V., Lombardo, L., Spatafora, C., and Tringali, C., Chemo-enzymatic synthesis and cell-growth inhibition activity of resveratrol analogues. Bioorganic chemistry, 2005. 33: p. 22-33. 11. Torres, P., Poveda, A., Jimenez-Barbero, J., Ballesteros, A., and Plou, F.J., Regioselective Lipase-Catalyzed Synthesis of 3-O-Acyl Derivatives of Resveratrol and Study of Their Antioxidant Properties. Journal of agricultural and food chemistry, 2009. 58: p. 807-813. 12. Vastano, B.C., Chen, Y., Zhu, N., Ho, C.T., Zhou, Z., and Rosen, R.T., Isolation and Identification of Stilbenes in Two Varieties of Polygonum c uspidatum. Journal of agricultural and food chemistry, 2000. 48: p. 253-256. 13. Shahidi, F. and Ho, C.T., Phenolics in food and natural health products: An overview. Phenolic Compounds in Foods and Natural Health Products, 20051-8. 14. Yang, C.S., Landau, J.M., Huang, M.T., and Newmark, H.L., Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual Review of Nutrition, 2001. 21: p. 381-406. 15. Jankun, J., Selman, S.H., Swiercz, R., and Skrzypczak-Jankun, E., Why drinking green tea could prevent cancer. Nature, 1997. 387: p. 561. 16. Cao, Y., Cao, R., and Brakenhielm, E., Antiangiogenic mechanisms of diet-derived polyphenols. The Journal of Nutritional Biochemistry, 2002. 13: p. 380-390. 17. Fauconneau, B., Waffo-Teguo, P., Huguet, F., Barrier, L., Decendit, A., and Merillon, J.M., Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life sciences, 1997. 61: p. 2103-2110. 18. Roldan, A., Palacios, V., Caro, I., and Perez, L., Resveratrol content of Palomino fino grapes: influence of vintage and fungal infection. Journal of agricultural and food chemistry, 2003. 51: p. 1464-1468. 19. Calzarano, F., D Agostino, V., and Carlo, M.D., Trans-resveratrol extraction from grapevine: Application to berries and leaves from vines affected by esca proper. Analytical Letters, 2008. 41: p. 649-661. 20. Sobolev, V.S. and Cole, R.J., trans-Resveratrol content in commercial peanuts and peanut products. Journal of agricultural and food chemistry, 1999. 47: p. 1435-1439. 21. Jiang, L.Y., He, S., Jiang, K.Z., Sun, C.R., and Pan, Y.J., Resveratrol and Its Oligomers from Wine Grapes Are Selective 1O2 Quenchers: Mechanistic Implication by High-Performance Liquid Chromatography- Electrospray Ionization- Tandem Mass Spectrometry and Theoretical Calculation. Journal of agricultural and food chemistry. 22. Stanley, L.L. and Patricia Mazier, M., Potential explanations for the French paradox. Nutrition Research, 1999. 19: p. 3-15. 23. Sun, A.Y., Simonyi, A., and Sun, G.Y., The ¡§French Paradox¡‥ and beyond: neuroprotective effects of polyphenols. Free Radical Biology and Medicine, 2002. 32: p. 314-318. 24. Minussi, R.C., Rossi, M., Bologna, L., Cordi, L., Rotilio, D., Pastore, G.M., and Duran, N., Phenolic compounds and total antioxidant potential of commercial wines. Food Chemistry, 2003. 82: p. 409-416. 25. Belguendouz, L., Fremont, L., and Gozzelino, M.T., Interaction of transresveratrol with plasma lipoproteins. Biochemical pharmacology, 1998. 55: p. 811-816. 26. Frankel, E., German, J., Kinsella, J., Parks, E., and Kanner, J., Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 1993. 341: p. 454-457. 27. Bertelli, A., Giovannini, L., Giannessi, D., Migliori, M., Bernini, W., Fregoni, M., and Bertelli, A., Antiplatelet activity of synthetic and natural resveratrol in red wine. International journal of tissue reactions, 1995. 17: p. 1. 28. Shrikhande, A.J., Wine by-products with health benefits. Food Research International, 2000. 33: p. 469-474. 29. Lin, J. and Tsai, S., Chemoprevention of cancer and cardiovascular disease by resveratrol. Proc. Natl. Sci. Counc. ROC (B), 1999. 23: p. 99-106. 30. Lampe, J.W., Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. The American journal of clinical nutrition, 1999. 70: p. 475S. 31. Camont, L., Cottart, C.H., Rhayem, Y., Nivet-Antoine, V., Djelidi, R., Collin, F., Beaudeux, J.L., and Bonnefont-Rousselot, D., Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Analytica chimica acta, 2009. 634: p. 121-128. 32. SCHRODER, G., BROWN, J.W.S., and SCHRODER, J., Molecular analysis of resveratrol synthase. European Journal of Biochemistry, 1988. 172: p. 161-169. 33. Ross, J.A. and Kasum, C.M., Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 2002. 22: p. 19-34. 34. Stivala, L.A., Savio, M., Carafoli, F., Perucca, P., Bianchi, L., Maga, G., Forti, L., Pagnoni, U.M., Albini, A., and Prosperi, E., Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. Journal of Biological Chemistry, 2001. 276: p. 22586. 35. Stojanovi, S., Sprinz, H., and Brede, O., Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Archives of Biochemistry and Biophysics, 2001. 391: p. 79-89. 36. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W.W., Fong, H.H.S., Farnsworth, N.R., Kinghorn, A.D., and Mehta, R.G., Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997. 275: p. 218. 37. 呂峰洲&林仁混, 基礎酵素學. 聯經出版社, 1991317-385. 38. Azerad, R., Application of biocatalysts in organic synthesis. Bulletin de la Societe chimique de France, 1995. 132: p. 17-51. 39. Lilly, M., Advances in biotransformation processes. Chemical engineering science, 1994. 49: p. 151-9. 40. Horchani, H., Ben Salem, N., Zarai, Z., Sayari, A., Gargouri, Y., and Cha bouni, M., Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresource technology, 2010. 101: p. 2809-2817. 41. Balcao, V.M. and Malcata, F.X., Lipase catalyzed modification of milkfat. Biotechnology advances, 1998. 16: p. 309-341. 42. Gandhi, N.N., Applications of lipase. Journal of the American Oil Chemists'' Society, 1997. 74: p. 621-634. 43. Rogalska, E., Cudrey, C., Ferrato, F., and Verger, R., Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality, 1993. 5: p. 24-30. 44. Garcia, R., Renedo, A., Martinez, M., and Aracil, J., Enzymatic synthesis of n-octyl (+)-2-methylbutanoate ester from racemic ( )-2-methylbutanoic acid by immobilized lipase: optimization by statistical analysis. Enzyme and microbial technology, 2002. 30: p. 110-115. 45. Kristensen, J.B., Xu, X., and Mu, H., Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases. Journal of the American Oil Chemists'' Society, 2005. 82: p. 329-334. 46. Xin, J., Zhang, L., Chen, L., Zheng, Y., Wu, X., and Xia, C., Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium. Food Chemistry, 2009. 112: p. 640-645. 47. Arroyo, M. and Sinisterra, J.V., High enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized lipase from Candida antarctica: a mechanistic approach. The Journal of Organic Chemistry, 1994. 59: p. 4410-4417. 48. Gupta, M.N. and Roy, I., Enzymes in organic media. European Journal of Biochemistry, 2004. 271: p. 2575-2583. 49. Suslick, K.S., Sonochemistry. Science, 1990. 247: p. 1439. 50. Chisti, Y., Sonobioreactors: using ultrasound for enhanced microbial productivity. TRENDS in Biotechnology, 2003. 21: p. 89-93. 51. Hernandez, C.E., Chen, H.H., Chang, C.I., and Huang, T.C., Direct lipase-catalyzed lipophilization of chlorogenic acid from coffee pulp in supercritical carbon dioxide. Industrial Crops and Products, 2009. 30: p. 359-365. 52. Babicz, I., Leite, S.G.F., de Souza, R.O.M.A., and Antunes, O., Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasonics sonochemistry, 2010. 17: p. 4-6. 53. Liu, Y., Jin, Q., Shan, L., Shen, W., and Wang, X., The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics sonochemistry, 2008. 15: p. 402-407. 54. Ramachandran, K., Al-Zuhair, S., Fong, C., and Gak, C., Kinetic study on hydrolysis of oils by lipase with ultrasonic emulsification. Biochemical Engineering Journal, 2006. 32: p. 19-24. 55. Lee, S.H., Nguyen, H.M., Koo, Y.M., and Ha, S.H., Ultrasound-enhanced lipase activity in the synthesis of sugar ester using ionic liquids. Process Biochemistry, 2008. 43: p. 1009-1012. 56. Xiao, Y., Wu, Q., Cai, Y., and Lin, X., Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydrate research, 2005. 340: p. 2097-2103. 57. Ji, J., Wang, J., Li, Y., Yu, Y., and Xu, Z., Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 2006. 44: p. e411-e414. 58. Institute, S., SAS/STAT User''s guide: Version 8. Vol. 1. 1999: SAS institute. 59. Liu, K.J. and Huang, Y.R., Lipase-catalyzed production of a bioactive terpene ester in supercritical carbon dioxide. Journal of biotechnology, 2010. 146: p. 215-220. 60. Yadav, G.D. and Lathi, P.S., Lipase catalyzed transesterification of methyl acetoacetate with n-butanol. Journal of Molecular Catalysis B: Enzymatic, 2005. 32: p. 107-113. 61. Song, Q.X. and Wei, D.Z., Study of Vitamin C ester synthesis by immobilized lipase from Candida sp. Journal of Molecular Catalysis B: Enzymatic, 2002. 18: p. 261-266. 62. Romero, M., Calvo, L., Alba, C., and Daneshfar, A., A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane. Journal of biotechnology, 2007. 127: p. 269-277. 63. Blattner, C., Zoumpanioti, M., Kroner, J., Schmeer, G., Xenakis, A., and Kunz, W., Biocatalysis using lipase encapsulated in microemulsion-based organogels in supercritical carbon dioxide. The Journal of supercritical fluids, 2006. 36: p. 182-193. 64. Alberty, R.A., The relationship between Michaelis constants, maximum velocities and the equilibrium constant for an enzyme-catalyzed reaction. Journal of the American Chemical Society, 1953. 75: p. 1928-1932.
摘要: 
白藜蘆醇(Resveratrol)具有抑制血小板非正常凝聚、抗氧化等多種有益效應的天然成分。白藜蘆醇在油及乳化劑等親油性的系統中,會因為其偏低的溶解度,而降低其抗氧化的功能及生物吸收率。然而,可藉由轉酯化的方式來提升其脂溶性,以增加其生物利用度、穩定度。本研究利用商業化脂解固定酵素Novozym ®435 (EC 3.1.1.3; Candida antarctica) 在2-甲基-2-丁醇溶劑中進行白藜蘆醇與醋酸乙烯酯的轉酯化反應。第一階段先以反應曲面法及五階層四變數之中心混層實驗設計,在搖瓶系統中,分析反應變數對合成白藜蘆醇乙醯化轉換率之影響。由統計分析及脊型分析之最適化莫耳轉化率為103%,其最佳反應條件為反應時間60 h、反應溫度64 ℃、基質莫耳比1:56、酵素用量為 2293 PLU (propyl laurate unit),以其條件進行反應其實驗結果之莫耳轉化率為95%。結果顯示Novozym® 435能有效的選擇在4′-OH位置乙醯化白藜蘆醇,而白藜蘆醇的抗氧化的主要功能是由3-OH來提供,因此4′-OH位置乙醯化後,除可增加脂溶性外,並可保留白藜蘆醇原本的抗氧化活性。第二階段,在超音波輔助系統合成乙醯化白藜蘆醇,超音波於液相溶液中產生空穴現象,造成許多微小氣泡,進而增加了酵素與基質的接觸機會,提高轉酯化效用及縮短合成時間。而根據統計分析及脊型分析合成乙醯化白藜蘆醇之最適化莫耳轉化率為96%,其最佳反應條件為反應時間10.78 h、酵素用量為 5492 PLU及超音波功率為147.80 W,以其條件進行反應其實驗結果之莫耳轉化率為95%。此外,本研究之動力學遵循Ping-Pong Bi-Bi的模式,探討在搖瓶及超音波系統下利用酵素催化合成乙醯化白藜蘆醇之動力學參數。在搖瓶系統中Vmax =10.58 mM 和Km=121.26 mM/h,而在超音波系統中Vmax=41.84 mM和Km=187.80 mM/h ,超音波系統下的轉酯化反應之Vmax值約增加3.95倍 。由Vmax值增加,可發現在超音波輔助反應下,確實增進了酵素與基質間的質傳效果而縮短了合成時間。

The use of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze synthesis of 4'-O-acetyl resveratrol from resveratrol and vinyl acetate was investigated in this study. Response surface methodology and five-level-four-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, including reaction time (24-72 h), temperature (25-65 °C), substrate molar ratio (1:15-1:75; RV:VA), and enzyme amount (600-3000 PLU) on the percentage molar conversion of 4'-O-acetyl resveratrol. The results showed that reaction temperature and enzyme amount were the most important parameters on percent molar conversion. Based on ridge max analysis, the optimum conditions for synthesis were: reaction time 60 h, reaction temperature 64 oC, substrate molar ratio 1:56 and enzyme amount 2293 PLU. The molar conversions of predicted and actual experimental values were 103% and 95%, respectively.
In the second part, ultrasonication provided a very effective mixing in the reaction solution due to cavitations in the liquid medium. The 3-level-3-variables Box-Behnken design was adopted to evaluate the effects of synthesis variables, and the optimum conditions were as follows: reaction time 10.78 h, enzyme amount 5492 PLU, and ultrasonic power 147.8 W. The molar conversions of predicted and actual experimental values were 96% and 95%, respectively.
The reaction kinetic was agreed with Ping-Pong mechanism, and the kinetic constants of the shaker and ultrasonic system were studied. Vmax obtained were 10.58 mM for shaker system and 41.84 mM for ultrasonic system; According to our results, we found using ultrasound could accelerate synthesis 4'-O-acetyl resveratrol.
URI: http://hdl.handle.net/11455/3876
其他識別: U0005-0908201118154500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.