Please use this identifier to cite or link to this item:
標題: 探討利用螺旋藻(Spirulina platensis)開發光合微生物燃料電池之可行性評估
Investigation on the possibility of developing the photosynthesis microbial fuel cells with Spirulina platensis
作者: 魏志勳
Wei, Chih-Hsun
關鍵字: photosynthetic microbial fuel cells;光合微生物燃料電池;microbial fuel cells;proton membrane;mediator;微生物燃料電池;光合作用質子通道膜;電子轉移介質;生物復育
出版社: 化學工程學系所
引用: 1. Bennetto, H., Electricity generation by microorganisms. Biotechnology, 1990. 1: p. 163-168. 2. Fitzhugh, R. and Cole, K., Voltage and current clamp transients with membrane dielectric loss. Biophysical Journal, 1973. 13: p. 1125-1140. 3. Potter, M.C., Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911. 84: p. 260. 4. Shukla, A., Suresh, P., Berchmans, S., and Rajendran, A., Biological fuel cells and their applications. Current Science, 2004. 87: p. 455-468. 5. DelDuca, M.G.F., M., J., Zurilla, and W., R., Developments in industrial microbiology. American Institute of Biological Sciences, 1963. 4: p. 81-84 6. 吳霞琴, 生物燃料電池的研究進展. 電化學, 2004. 10(1). 7. Lovley, D.R., Stolz, J.F., Nord, G.L., and Phillips, E.J.P., Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987. 330: p. 252-254. 8. Park, H.S., Kim, B.H., Kim, H.S., Kim, H.J., Kim, G.T., Kim, M., Chang, I.S., Park, Y.K., and Chang, H.I., A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001. 7: p. 297-306. 9. Logan, B.E., Guiot, S., Pavlostathis, S., and van Lier, J., Simultaneous wastewater treatment and biological electricity generation. Water Science and Technology, 2005. 52: p. 31-37. 10. Tanaka, K., Tamamushi, R., and Ogawa, T., Bioelectrochemical fuel cells operated by the cyanobacterium, Anabaena variabilis. Journal of Chemical Technology and Biotechnology. Biotechnology, 1985. 35: p. 191-197. 11. Yagishita, T., Horigome, T., and Tanaka, K., Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. Journal of Chemical Technology and Biotechnology, 1993. 56: p. 393-399. 12. Yagishita, T., Sawayama, S., Tsukahara, K., and Ogi, T., Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp. PCC6714. Journal of bioscience and bioengineering, 1999. 88: p. 210-214. 13. Lam, K.B., Chiao, M., and Lin, L. A micro photosynthetic electrochemical cell. 2003: IEEE. 14. Allen, R.M.B., and P., H., Microbiol fuel-cells-electricity production from carbonhydrates. Applied Biochemical Biotechnology, 1993. 39/40: p. 27-40. 15. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K., Microbial fuel cells: methodology and technology. Environmental Science and Technology, 2006. 40: p. 5181-5192. 16. Ghangrekar, M. and Shinde, V., Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 2007. 98: p. 2879-2885. 17. Liu, H., Ramnarayanan, R., and Logan, B.E., Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology, 2004. 38: p. 2281-2285. 18. Wang, S.K., Effects of fule types and organic loads on performance of microbial fuel cells. National Taiwan Ocean University, 2008. 19. Kim, N., Choi, Y., Jung, S., and Kim, S., Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnology and Bioengineering, 2000. 70: p. 109-114. 20. 王思凱, 燃料型態與有機負荷對微生物燃料電池績效之影響. 國立臺灣海洋大學, 2008. 河海工程研究所. 21. Park, D. and Zeikus, J., Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied Microbiology and Biotechnology, 2002. 59: p. 58-61. 22. Moon, H., Chang, I.S., and Kim, B.H., Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 2006. 97: p. 621-627. 23. Liu, H., Cheng, S., and Logan, B.E., Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology, 2005. 39: p. 5488-5493. 24. Raghavulu, S.V., Mohan, S.V., Goud, R.K., and Sarma, P., Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochemistry Communications, 2009. 11: p. 371-375. 25. Wang, Y.-C., Electricity Generation From Membrane-less Mircobial Fuel Cell During Wastewater Treatment. National Taiwan Ocean University, 2007. 26. Schroder, U., Niesen, J., and Scholz, F., A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie, 2003. 115: p. 2986-2989. 27. Oh, S.E., Min, B., and Logan, B.E., Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science and Technology, 2004. 38: p. 4900-4904. 28. 余菀婷, 操作條件對微生物燃料電池性能之影響. 國立臺灣海洋大學, 2006. 河海工程研究所. 29. Du, Z., Li, H., and Gu, T., A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 2007. 25: p. 464-482. 30. Niessen, J., Schroder, U., and Scholz, F., Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch. Electrochemistry Communications, 2004. 6: p. 955-958. 31. Chaudhuri, S.K. and Lovley, D.R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 2003. 21: p. 1229-1232. 32. Min, B., Kim, J.R., Oh, S.E., Regan, J.M., and Logan, B.E., Electricity generation from swine wastewater using microbial fuel cells. Water Research, 2005. 39: p. 4961-4968. 33. 陳鴻文, PEMFC電極添加碳纖維的效能評估. 元智大學化學工程學系, 2002. 34. 許株綾, 探討操作參數影響高外電阻微生物燃料電池之績效. 國立海洋大學, 2006. 35. Huang, T.-J. and Chou, C.-L., Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF–GDC cathode. Electrochemistry Communications, 2009. 11: p. 1464–1467. 36. Maruyama, J., Inaba, M., and Ogumi, Z., Effect of fluorinated alcohol on the kinetics of cathodic oxygen reduction at gold electrodes. Electrochimica Acta, 1999. 45: p. 415–422. 37. He, P. and Wang, X., The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. International Journal of Hydrogen Energy, 2011: p. 1-7. 38. Cao, D., Gao, Y., and Wang, G., A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. International Journal of Hydrogen Energy, 2010. 35: p. 807-813. 39. Geng, X. and Zhang, H., Borohydride electrochemical oxidation on carbon-supported Pt-modified Au nanoparticles. Journal of Power Sources, 2010. 195 p. 1583–1588. 40. Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S., and Kim, B.H., Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 2004. 39: p. 1007–1012 41. Cheng, S., Liu, H., and Logan, B.E., Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science and Technology, 2006. 40: p. 2426-2432. 42. Huang, Y.-N., Effect Of Distance Between Andoe And Cathode On Performance of Microbial Fuel Cells. National Taiwan Ocean University, 2008. 43. Grzebyk, M. and Pozniak, G., Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Separation and Purification Technology, 2005. 41: p. 321-328. 44. Oh, S.E. and Logan, B.E., Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 2006. 70: p. 162-169. 45. Feng, Y., Wang, X., Logan, B.E., and Lee, H., Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 2008. 78: p. 873-880. 46. Marty, J., Olive, D., and Asano, Y., Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values. Environmental Technology, 1997. 18: p. 333-337. 47. Menicucci, J., Beyenal, H., Marsili, E., Veluchamy, R.A., Demir, G., and Lewandowski, Z., Procedure for determining maximum sustainable power generated by microbial fuel cells. Environmental Science and Technology, 2006. 40: p. 1062-1068. 48. Rabaey, K., Rodriguez, J., Blackall, L.L., Keller, J., Gross, P., Batstone, D., Verstraete, W., and Nealson, K.H., Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME Journal, 2007. 1: p. 9-18. 49. Ieropoulos, I.A., Greenman, J., Melhuish, C., and Hart, J., Comparative study of three types of microbial fuel cell. Enzyme and Microbial Technology, 2005. 37: p. 238-245. 50. Min, B., Cheng, S., and Logan, B.E., Electricity generation using membrane and salt bridge microbial fuel cells. Water Research, 2005. 39: p. 1675-1686. 51. Mench, M.M., Wang, C.Y., and Thynell, S.T., An introduction to fuel cells and related transport phenomena. International Journal of Transport Phenomena, 2001. 3: p. 151-176. 52. Karube, I., Matsuoka, H., Murata, H., Kajiwara, K., Suzuki, S., and Maeda, M., Large Scale Bacterial Fuel Cell Using Immobilized Photosynthetic Bacteria. Annals of the New York Academy of Sciences, 1984. 434: p. 427-436. 53. Riedel, K., Renneberg, R., Kuhn, M., and Scheller, F., A fast estimation of biochemical oxygen demand using microbial sensors. Applied Microbiology and Biotechnology, 1988. 28: p. 316-318. 54. Kim, B.H., Chang, I.S., Cheol Gil, G., Park, H.S., and Kim, H.J., Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology letters, 2003. 25: p. 541-545. 55. Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., and Domiguez-Espinosa, R., Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnology, 2004. 22: p. 477-485. 56. Gregory, K.B., Bond, D.R., and Lovley, D.R., Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 2004. 6: p. 596-604. 57. Gregory, K.B. and Lovley, D.R., Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environmental Science and Technology, 2005. 39: p. 8943-8947. 58. Rajagopal, S., Murthy, S., and Mohanty, P., Effect of ultraviolet-B radiation on intact cells of the cyanobacterium Spirulina platensis: characterization of the alterations in the thylakoid membranes. Journal of Photochemistry and Photobiology B: Biology, 2000. 54: p. 61-66. 59. Zhang, T., Gannon, S.M., Nevin, K.P., Franks, A.E., and Lovley, D.R., Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environmental Microbiology, 2010. 12: p. 1011-1020. 60. Peng, T.C., The effects of light intensity, temperatureand salinity on polysaccharide of Spirulina platensis. National Taiwan Ocean University, 2005. Department of Aquaculture. 61. Richmond, A., Handbook of microalgal culture: biotechnology and applied phycology. 2004: Wiley-Blackwell. 62. Tomonou, Y. and Amao, Y., Effect of micellar species on photoinduced hydrogen production with Mg chlorophyll-a from spirulina and colloidal platinum. International Journal of Hydrogen Energy, 2004. 29: p. 159-162. 63. Rangel-Yagui, C.O., Danesi, E.D.G., de Carvalho, J.C.M., and Sato, S., Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource Technology, 2004. 92: p. 133-141. 64. Niyogi, K.K., Bjorkman, O., and Grossman, A.R., Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. The Plant Cell Online, 1997. 9: p. 1369. 65. Su, C.H., Systematic design for cultivation of oleaginous microalgae. National Tsing Hua University, 2006. Department of Chemical Engineering. 66. Ravindra, P., Value-added food: Single cell protein. Biotechnology Advances, 2000. 18: p. 459-479. 67. Wikfors, G.H. and Ohno, M., Impact of algal research in aquaculture. Journal of Phycology, 2001. 37: p. 968-974. 68. Deshnium, P., Paithoonrangsarid, K., Suphatrakul, A., Meesapyodsuk, D., Tanticharoen, M., and Cheevadhanarak, S., Temperature independent and dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiology Letters, 2000. 184: p. 207-213. 69. Gregersen, L. and Jorgensen, S.B., Supervision of fed-batch fermentations. Chemical Engineering Journal, 1999. 75: p. 69-76. 70. Ayehunie, S., Belay, A., Baba, T.W., and Ruprecht, R.M., Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). JAIDS Journal of Acquired Immune Deficiency Syndromes, 1998. 18: p. 7. 71. Belay, A., Ota, Y., Miyakawa, K., and Shimamatsu, H., Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 1993. 5: p. 235-241. 72. Binaghi, L., Del Borghi, A., Lodi, A., Converti, A., and Del Borghi, M., Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochemistry, 2003. 38: p. 1341-1346. 73. Chojnacka, K. and Noworyta, A., Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 2004. 34: p. 461-465. 74. Lodi, A., Binaghi, L., Solisio, C., Converti, A., and Borghi, M.D., Nitrate and phosphate removal by Spirulina platensis. Journal of Industrial Microbiology and Biotechnology, 2003. 30: p. 656-660. 75. Qiang, H. and Richmond, A., Productivity and photosynthetic efficiency ofSpirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. Journal of Applied Phycology, 1996. 8: p. 139-145. 76. Hu, Q., Guterman, H., and Richmond, A., A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 1996. 51: p. 51-60. 77. Cuaresma Franco, M., Buffing, M.F., Janssen, M., Vilchez Lobato, C., and Wijffels, R.H., Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology, 1998: p. 1-7. 78. Vonshak, A., Chanawongse, L., Bunnag, B., and Tanticharoen, M., Light acclimation and photoinhibition in threeSpirulina platensis (cyanobacteria) isolates. Journal of Applied Phycology, 1996. 8: p. 35-40. 79. Jensen, S. and Knutsen, G., Influence of light and temperature on photoinhibition of photosynthesis inSpirulina platensis. Journal of Applied Phycology, 1993. 5: p. 495-504. 80. Richmond, A., Outdoor mass cultures of microalgae. Handbook of Microalgal Mass Culture, 1986: p. 285-330. 81. Belkin, S. and Boussiba, S., Resistance of Spirulina platensis to ammonia at high pH values. Plant and Cell Physiology, 1991. 32: p. 953. 82. Vonshak, A. and Tomaselli, L., Arthrospira (Spirulina): Systematics and EcophysioIogy. The Ecology of Cyanobacteria, 2002: p. 505-522. 83. Jimenez, A.M. and Borja, R., Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochemistry, 2003. 38: p. 1275-1284. 84. Alberto Vieira Costa, J., Maria Colla, L., and Fernando Duarte Filho, P., Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 2004. 92: p. 237-241. 85. ZARROUK, C., Contribution a l etude d une cyanophycee: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima. 1966, Thesis (Ph. D.)¡VUniversity d Paris, Paris, 1966. 86. Wang, C.-Y., Effects of using light emitting diodes on the cultivation of Spirulina platensis. 國立中興大學化學工程學系, 2007. 87. Chojnacka, K., Chojnacki, A., and Górecka, H., Treace element removal by Spirulina sp. from copper smelter and refinery effuents. Hydrometallurgy, 2004. 73: p. 147-153. 88. Nelson, D., Improved chlorophyll extraction method. Science, 1960. 5: p. 351-356. 89. Abalde, J., Betancourt, L., Torres, E., Cid, A., and Barwell, C., Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Science, 1998. 136: p. 109-120. 90. Bennett, A. and Bogorad, L., Complementary chromatic adaptation in filamentous blue-green alga. The Journal of Cell Biology, 1973. 58: p. 419-435. 91. Sarada, R., Pillai, M.G., and Ravishankar, G.A., Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yild, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 1999. 34: p. 795-801. 92. Sloth, J.K., Wiebe, M.G., and Eriksen, N.T., Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria Enzyme and Microbial Technology, 2006. 38: p. 168-175. 93. C.H., C., The growth and cellular characteristics of spirulina platensis. Master Thesis, 1983. 94. 杜欣霖, 利用掃描式電子穿隧顯微鏡觀察醇分子對於銅沉積在鉑(111)電極上的影響. 碩士論文, 2011. 中央大學化學系. 95. 呂淑佩, 聚苯胺複合式酵素碳粉電極在生化分析上的應用. 碩士論文, 1990. 國立東華大學化學所. 96. 方宣尹, 掃描式電子穿隧顯微鏡對苯胺、己烷基雙硫醇及苯硫酚分子在金電極上的研究. 碩士論文, 1994. 國立中央大學化學所. 97. Hong, S.W., Chang, I.S., Choi, Y.S., and Chung, T.H., Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology, 2009. 100: p. 3029–3035. 98. He, Z., Kan, J., Mansfeld, F., Angenent, L.T., and Nealson, K.H., Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environmental Science and Technology, 2009. 43: p. 1648–1654. 99. Fu, C.-C., Hungb, T.-C., Wen-Teng Wua, Wena, T.-C., and Suc, C.-H., Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal, 2010. 52: p. 175-180.
隨著太陽能電池的蓬勃發展,越來越多的科學家開始尋找將光能轉變成電能的方法。近年來研究人員提出希望利用光合微生物(Photo-synthetic organisms)例如微藻或是光合細菌作為微生物燃料電池的生物催化劑,但目前無論是微生物燃料電池(MFC)還 是光合微生物燃料電池(PMFC),研究人員都將研究的重心擺在如何提升電池的效率上,因此加入了質子通道膜(proton membrane)及電子轉移介質(mediator)提升效能,卻因此造成微生物死亡無法復育及降低經濟效應,在本研究中吾人希望透過設計一新式之membrane-less及mediator-less光合微生物燃料電池來探討其在不同藻類濃度、電極間距與產生電量之關係。
本研究利用螺旋藻(Spirulina platensis)做為光合微生物燃料電池之陽極生物反應物,其陽極為一鍍金之網狀電極,陰極為一碳纖維電極。實驗結果指出,當我們改變陽極上吸附之藻類葉綠素含量確實會造成電壓有所變化,當電極間距為4 cm,葉綠素濃度為0.5 mg,此時最大OCV為0.49 V,當外電阻為1 kΩ時,最大電流密度為10 mW/m2,另外,藻類經過生物復育15小時後,可使電壓回復至復育前0.49 V。

In the development of solar cells, the ultimate goal is to search for the way that turned light energy to electrical energy. Photo-synthetic organisms are used as the catalyst for microbial fuel cells. However, in the literature, the studies mainly focused on improving the efficiency of the battery in the microbial fuel cells or photosynthetic microbial fuel cells. To achieve this purpose, the proton membranes and mediators had to be applied in the process, leading to the death of organisms and thus reducing the fuel cell's performance. In this study, a membrane-less and mediator-less photosynthetic microbial fuel cell was designed. The effects of biomass of algae, electrode distance, and electric quantity, on the cell performance were investigated.
Spirulina platensis was used as the biocatalyst of the photosynthetic microbial fuel cells on the anode. The anodic electrode being a gilding gold membrane and the cathode is a carbon fiber membrane. It is noted that the chlorophyll concentrations on the anode actually varied the open circuit voltage (OCV). When the electrode distance is 4cm and the concentration of the chlorophyll is 0.5 mg, it has a maximal OCV of 0.49V. When the external resistance is 1kΩ, the cell has a maximum power density of 10mW/m2. Besides, a cultivation of the used algae was carried out. The result displayed that the cultivated algae can provide the same OCV of 0.49V like the original algae after a 15-hour culture.
其他識別: U0005-0908201119110800
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.