Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3880
標題: 利用規則樹枝狀高分子製備具親疏水調控型蜂窩狀薄膜材料
Tailored Hydrophobic/Hydrophilic Properties of Honeycomb-like Polymeric Films Based on Dendritirc Side-Chain Polymers
作者: 陳威帆
Chen, Wei-Fan
關鍵字: side chain dendritic polymer;規則樹枝狀高分子;breath figure;honeycomb;surface modification;蜂窩狀結構;表面改質;親疏水材料
出版社: 化學工程學系所
引用: 1. Parker, A. R.; Chris, R. L. Nature 2001, 414, 33. 2. Zhai, L.; Berg, M. C.; Cebeci, F. C.; Kim, Y.; Milwid, J. M.; Rubner, M. F.; Cohen, R. E. Nano Lett. 2006, 6, 1213. 3. Xia, L.; Jian, L. Adv. Mater. 2008, 20, 2842. 4. Lee, J. A.; McCarthy, T. C. Macromolecules 2007, 40, 3965. 5. Thierry, D.; Frederic, G.; Sonia, A.; Elisabeth, T. G.; Xavier, N. R. K.; Franck, C. Soft Matter 2011, 3, 1053. 6. Stappen, M. V.; Malliet, B.; Stals, L.; Schepper, L. D.; Roos, J.R.; Celis, J. P. Mater. Sci. Eng. A 1991, 140, 554. 7. Lunarska, E.; Ghanem, S. A. Phys. Stat. Sol.1994, 145, 587. 8. Zhou, M.; Li, J.; Wu, C.; Zhou, X.; Cai, L. Soft Matter 2011, 7, 4391. 9. Ting, W. H.; Chen, C. C.; Dai, S. A.; Suen, S. Y.; Yang, I. K.; Liu, Y. L.; Chen, F. M. C.; Jeng, R. J. J. Mater. Chem. 2009, 19, 4819. 10.Joralemon, M. J.; O''Reilly, R. K.; Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L. Macromolecules 2005, 38, 5436. 11.Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 682. 12.Tsai, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. J. Mater. Chem. 2006, 16, 2056. 13.Bosman, A. W.; Janssen, H. M.; Weijer, E. W. Chem. Rev. 1999, 99, 1665. 14.Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819. 15.Esfand, R.; Tomalia, D. A. Drug. Discov. Today 2001, 6, 427. 16.Namazi, H.; Adeli, M. Biomaterials 2005, 26, 1175. 17.Piotti, M. E.; Rivera, J., F.; Bond, R.; Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1999, 121, 9471. 18.Rayleigh, L. Nature 1911, 86, 416. 19.Rayleigh, L. Nature 1912, 90, 436. 20.Widawski, G.; Rawiso, M.; Francois, B. Nature 1994, 369, 387. 21.Francois, B.; Ederle , Y.; Mathis C. Synth. Met. 1999, 103, 2362. 22.Maruyama, N; Koito, T; Nishida, J. Thin Solid Films, 1998, 327, 854. 23.Lord, H. T.; Quinn, J. F.; Angus, S. D.; Whittaker, M. R.; Stenzel, M. H.; Davis, T. P. J. Mater. Chem. 2003, 13, 2819. 24.Connal, L. A.; Vestberg, R.; Gurr, P. A.; Hawker, C. J.; Qiao, G. G. Langmuir 2008, 24, 556. 25.Wong, K. H.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Polymer 2007, 48, 4950. 26.Wong, K. H.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Aust. J. Chem. 2006, 59, 539. 27.Hernandez-Guerrero, M.; Min, E. H.; Barner-Kowollik, C.; Muller, A. H. E.; Stenzel, M. H. J. Mater. Chem. 2008, 18, 4718. 28.Song, L.; Bly, R. K.; Wilson, J. N.; Babak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. F. Adv. Mater. 2004, 16, 115. 29.Haswell, S. J.; Skelton, V. Trends Anal. Chem. 2000, 19, 389. 30.Bormashenko, E.; Schechter, A.; Stanevsky, O.; Stein, Tamir.; Balter, S.; Musin, A.; Bormashenko, Y.; Pogred, R.; Barkay, Z.; Aurbach, D. Macromol. Mater. Eng. 2008, 293, 872. 31.Beattie, D.; Wong, K. H.; Williams, C.; Poole-Warren, L. A.; Davis, T. P.;Barner-Kowollik, C.; Stenzel, M. H. Biomacromolecules 2006, 7, 1072. 32.Li, L.; Chen, C.; Li, C.; Zhang, A.; Liu, X.; Xu, B.; Gao, S.; Jin, G.; Ma, Z. J. Mater. Chem. 2009, 19, 2789. 33.Nomura, E.; Hosoda, A,; Takagaki, H.; Miyake, Y.; Shibakami, M.; Taniguchi, H. Langmuir 2010, 26, 10266. 34.Erdogan, B.; Song, L.; Wilson, J. N.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. F. J. Am. Chem. Soc. 2004, 126,3678. 35.Imada, M.; Noda, M. S.; Chutinan, A.; Tokuda, T.; Murata, M.; Sasaki, G. Appl. Phys. Lett. 1999, 75, 316. 36.Barner-Kowollik, C.; Dalton, H.; Davis, T. P.; Stenzel, M. H.; Angew. Chem. Int. Ed. 2003, 42, 3664. 37.Maruyama, N.; Koito, J.; Sawadaishi, T.; Cieren, X.; Ijiro, K.; Karthaus, O.; Shimomura, M. The solid films 1998, 854. 38.Yabu, H.; Shimomura, M.; Langmuir 2005, 21, 1709. 39.Yabu, H.; Takebayshi,M.; Tanaka, M.; Shimomura, M. Langmuir 2005, 21, 3235. 40.Cheng, C.; Tian, Y.; Shi, Y.; Tang, R.; Xi, F. Macromol. Rapid Commun. 2005, 26, 1266. 41.Deepak, V. D.; Asha, S. K. J. Phys. Chem. 2006, 110, 21450. 42.Takuya, K.; Yuichi, H.; Olaf, K. Adv. Funct. Mater. 2007, 17, 3569. 43.Wong, K. H.; Stenzel, M. H.; Duvall, S.; Ladouceur, F. Chem. Mater. 2010, 22, 1878. 44.Ke, B. B.; Wan, L. S.; Zhang, W. X.; Xu, Z. K. Polymer 2010, 51, 2168. 45.Ma, H.; Cui, J.; Song, A.; Hao, J. Chem. Commun. 2011, 47, 1154. 46.Chang, C. C.; Juang, T. Y.; Ting, W. H.; Lin, M. S.; Yeh, C. M.; Dai, S. A.; Suen, S. Y.; Liu, Y. L.; Jeng, R. J. Mater. Chem. Phys.2011, 128, 157. 47.Stockmayer, W. H. J. Chem. Phys. 1944, 263, 1710. 48.Flory, P. J. J. Chem. Phys. 1943, 11, 512. 49.Egon, B.; Winfried, W.; Fritz, V. Synthesis 1978, 155. 50.Tomalia, D. A. ; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J 1985, 17. 117. 51.Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003. 52.Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K.; Russo, P. S.; Saunders, M. J. J. Am. Chem. Soc. 1986, 108, 849. 53.Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638. 54.Spindler, R.; Frechet, J. M. J. J. Chem. Soc., Perkin Trans. 1993, 1, 913. 55.Spindler, R.; Frechet, J. M. J. Macromolecules 1993, 26, 4809. 56.Peerlings, H. W. I.; Van Benthem, R. A. T. M.; Meijer, E. W. J. Polym. Sci. Part A:Polym. Chem. 2001, 39, 3112. 57.Hawker, C. J.; Frechet, J. M. J. Polymer 1992, 33, 1507. 58.Schluter, A. D. Top. Curr. Chem. 1998, 197, 165. 59.Bo, Z.; Schluter, A. D. Macromol. Rapid Commun. 1999, 20, 21. 60.陳衍甫, 國立中興大學化學工程學系碩士論文 2001. 61.吳美儀, 國立中興大學化學工程學系碩士論文 2003. 62.Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J.; Su, W. C.; Jeng, R. J. J. Appl. Polym. Sci. 2007, 103, 3591. 63.Chang, H. L.; Lin, H. L.;Wang, Y. C.;Dai, S. A.;Su, W. C. Polymer 2007, 48, 2046. 64.Bunz, U. H. F. Adv. Mater. 2006, 18, 973. 65.Rannard, S. P.; Davis, N. J. J. Am. Chem. Soc. 2000, 122, 11729. 66.Solomons, T. W. G. Organic Chemistry 1996 Wiely 6th Edition, 263. 67.Cheng, C. X.; Tian, Y.; Shi, Y. Q.; Tang, R. P.; Xi, F. Langmuir 2005, 21, 6576. 68.Cheng, C.; Tian, Y.; Shi, Y.; Tang, R.; Xi, F. Macromol. Rapid Commun. 2005, 26, 1266. 69.Peng, J.; Han, Y.; Yang, Y.; Li, B. Polymer 2004, 45, 447. 70.Liu, Y. L.; Wu, Y. H.; Tsai, W. B.; Tsai, C. C.; Chen, W. S.; Wu, C. S. Carbohydrate Polymers 2011, 84, 770. 71.汪乙嘉, 國立中興大學化學工程學系碩士論文 2005.
摘要: 
將dendron導入polymer中,製備側鏈規則樹枝狀高分子 (dendritic side-chain polymers),由於dendron本身具有多氫鍵官能基及分子間凡得瓦爾力,有助於分子的自組裝,使側鏈型規則樹枝狀高分子能輕易藉由breath figure方式得到蜂窩狀高分子膜。
首先本實驗利用具有選擇性之雙官能基單體 (4-isocyanato-4’ (3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD))進行逐步合成反應,合成出末端為C18之polyurea/malonamide dendron 樹枝狀高分子,避免了傳統添加觸媒、保護及去保護的合成步驟,亦採取收斂合成方式,確保結構上dendron的完全。IDD與diethyltriamine (DETA) 為構築單體,重複進行交替加成反應,得到高產率極高代數的dendron,之後利用N-(3-amino-propyl)diethanolamine (APDEA) 合成具有diol官能基樹枝狀高分子。之後利用SSRR ( Sequential Self-Repetitive Reaction )及PU系統,使側鏈帶有anhydride 與azetidine-2,4-dione兩種側鏈規則樹枝狀高分子,利用breath figure形成蜂窩狀高分子膜,爾後潤濕於脂肪族一級胺甲醇或乙醇溶液中,藉由不同的一級胺改質劑進行改質,可依需求調控蜂窩狀高分子薄膜。藉由濕度、溶液濃度、分子結構及dendron含量的變化,蜂窩狀高分子薄膜孔徑可由300 nm~2.3μm,並探討交聯型、親水型與疏水型之蜂窩狀高分子薄膜性質,薄膜水滴接觸角範圍為10度至145度。並藉由剝離法形成rod-co-valley結構,因水滴與基材接觸面積變小,使得接觸角提昇至超疏水的151度。

The dendrons comprised urea/malonamide linkages and alkyl chains, thereby enhanced the degrees of hydrogen bonding (at the focal segment) and van der Waals interaction (at the periphery), respectively. The latter interactions helped inducing self-assembly and phase separation during the preparation of the polymer films.
A dual functional building block 4-isocyanato-4' (3,3-dimethyl -2,4 -dioxo-azetidino) diphenylmethane (IDD) was selected to prepare waxy type dendrons via a convergent route. Utilizing high reactivity of isocyanate and selective reactivity of azetidine - 2 , 4-dione, the sequential addition reactions were developed under mild condition without resorting to painstaking protection-deprotection or activation methodology. To introduce the dendrons into the polyurethane systems, N-(3-aimnopropyl)-diethanolamine (APDEA) was reacted with azetidine -2,4-dione containing dendrons. Herein we described the formation of honeycomb films and the physical properties of maleic andydride-containing and azetidine-2,4-dione-containing side chain dendritic polymer via SSRR (Sequential Self-Repetitive Reaction) and polyurethane systems, respectively. Chemical modification was achieved by immersion in ethanol or methanol solution comprising apliphatic primary amines. Further chemical reaction was monitored by fourier transform infrared spectroscopy. The regularity of the hexagonal array and the pore size were influenced by the polymer structure and casting conditions. The properties of crosslinked hydrophilic and hydrophobic honeycomb structures were investigated. The pore's diameters range from 300 nm to 2.3 μm. Dependent on the extent of the surface modification, the contact angles (water) of these honeycomb structures could be tailored to a range from 10o to 145o. To further promote the roughness effect, a thin layer of the honeycomb-like polymer film was peeled off to obtain a rod-co-valley-like surface. For this rod-co-valley-like morphology, the contact angle was indeed raised to 151o.
URI: http://hdl.handle.net/11455/3880
其他識別: U0005-1005201111345700
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.