Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3883
DC FieldValueLanguage
dc.contributor吳宗明zh_TW
dc.contributorTzong-Ming Wuen_US
dc.contributor廖建勛zh_TW
dc.contributorChien-Shiun Liaoen_US
dc.contributor.advisor蔡毓楨zh_TW
dc.contributor.advisorYu-Chen Tsaien_US
dc.contributor.author張皓翔zh_TW
dc.contributor.authorChang, Hao-Hsiangen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T05:33:01Z-
dc.date.available2014-06-06T05:33:01Z-
dc.identifierU0005-1107201112121900zh_TW
dc.identifier.citation[1]A. Burke, J. Power Sources, 91, 37, 2000. [2]L. L. Zhang, X. S. Zhao, Chem. Soc., 38, 2520, 2009. [3]P. Simon, Y. Gogotsi, Nature Mater., 7, 845, 2008. [4]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 8, 3498, 2008. [5]T. M. Wu, H. L. Chang, Y. W. Lin, Compos. Sci. Tech., 69, 639, 2009. [6]J. U. Kim, I. S. Jeong, I. S. Moon, H. B. Gu, J. Power Sources, 97, 450, 2001. [7]C. W. Lin, B. J. Hwang, C. R. Li, Mater. Chem. Phys., 55, 139, 1998. [8]K. Jurewicz, S. Delpuex, V. Bertagna, F. Beguin, E. Frackowiak, Chem. Phys. Lett., 347, 36, 2001. [9]G. Natta, G. Mazzanti, P. Corradini, Cl. Lince., Mat. Natur., 25, 3, 1958. [10]H. Shirakawa , S. Polym. J., 2, 231, 1971. [11]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem.Soc. Chem. Commun., 1098, 1977. [12]B. Wessling, Synth. Met., 45, 119, 1991. [13]A. J. Heeger, In: Skotheim, T.A. (Ed.), Handbook of Conducting Polymers, vol. II. Marcel Dekker, New York, p. 729 and references therein, 1986. [14]S. P. Armes, Synth. Met., 20, 365, 1987. [15]J. Zhang, Y. She, B. Lu, Y. Zhou, K.F. Chin, J. Polym. Sci., 11, 334, 1993. [16]E. T. Kang, K. G. Neoh, Y. K. Ong, K. L. Tan, B. T. G. Tan, Macromolecules, 24, 2822, 1991. [17]E.T. Kang, K.G. Neoh, T. Matsuyama, H. Yamaoka, Polym. Commun., 29, 201, 1988. [18]E. T. Kang, H. C. Ti, K. G. Neoh, T. C. Tan, Polym. J., 20, 399, 1988. [19]S. Rapi, V. Bocchi, G.P. Gardini, Synth. Met., 24, 217, 1988. [20]H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers. Vol 2, Wiley, New Work, 1997. [21]Y. C. Luo, J. S. Do, Biosens. Bioelectron., 20, 15, 2004. [22]Lai, E. K. W., P. D. Beattie, F. P. Orfino, E. Simon, Electrochim. Acta., 44, 2559, 1999. [23]A. F. Diaz, J. I. Castillo, J. A. Logan and W. Y. Lee, 1981, ’’Electrochemistry of Conducting Polypyrrole Films’’,J. Electroanal. Chem, Vol 129, p.115. [24]G. A. Snook, P. Kao, A. S. Best, J. Power Sources, 196, 1, 2011. [25]A. K. Geim, K. S. Novoselov, Nature Mater., 26, 183, 2007. [26]H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 318, 162, 1985. [27]S. Iijima, Nature, 354, 56, 1991. [28]J. Wang, M. Musameh, Y. Lin, J. Am. Chem. Soc., 125, 2408, 2003. [29]C. D. Reddy, S. Rajendran, K. M. Liew, Nanotechnology, 17, 864, 2006. [30]Y. Geng, S. J. Wang, J. K. Kim, J. Colloid. Interf. Sci., 336, 592, 2009. [31]P. R. Wallace, The band theory of graphite. Phys. Rev, 71, 622, 1947. [32]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,1 A. A. Firsov, Science., 306, 666, 2004. [33]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett., 9, 30, 2009. [34]A. V. Raygani, H. Ghaneialvar, Z. Rahimi, H. Nomani, M. Saiedi, F. Bahrehmand, H. Tavilani, T. Pourmotabbed, Sens. Actuators, B, 150, 301, 2010. [35]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herreraalonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem.B, 110, 8535, 2006. [36]W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 80, 1339, 1958. [37]M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solıs-Fernandez, A. Martı´nez-Alonso, and J. M. D. Tascon, J. Phys. Chem. C, 114, 6426, 2010. [38]J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chem. Mater., 22, 2213, 2010 [39]G. K. Ramesha, S. Sampath, J. Phys. Chem. C, 113, 7985, 2009. [40]N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater., 18, 3506, 2008. [41]J. F. Wu, M. Q. Xu, G. C. Zhao, Electrochem. Commun., 12, 175, 2010. [42]C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron, 25, 1070, 2010. [43]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C, 113, 13103, 2009. [44]Y. Si, E. T. Samulski, Nano Lett, 8, 1679, 2008. [45]D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol., 3, 101, 2008. [46]S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S. Ruoff, J. Mater. Chem., 16, 155, 2006. [47]A. J. Patil, J. L. Vickery, T. B. Scottand, S. Mann, Adv. Mater., 21, 3159, 2009. [48]R. Kotz, M. Carlen, Electrochim. Acta, 45, 2483, 2000. [49]A. Burke, J. Power Sources, 91, 37, 2000. [50]E. Frackowiak, K. Metenier, B. Vertagna, Appl. Phys. Lett.,77, 2421, 2000. [51]M. S. Michael, S. R. S. Prabaharan, J. Power Sources, 136, 250, 2004. [52]J. R. Potts, D. R. Dreyer, C. W. Bielawaski, R. S. Ruoff, Polymer, 5, 25, 2011. [53]K. C. Liu, M. A. Anderson, Hayto, J. Electrochem. Soc., 143, 124, 1996. [54]S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc., 147, 444, 2000. [55]S. A. Hashmi, H. M. Upadhyaya, Solid State Ionic, 152, 883, 2002. [56]Y. Han, L. Hao, X. Zhang, Synthetic Met, 160, 2336, 2010. [57]L. L. Zhang, S. Zhao, X. N. Tian, X. S. Zhao., Langmuir, 26, 17624, 2010. [58]D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, J. Power Sources, 196, 5990, 2011. [59]A. J. Bard, I. R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [60]D. R. Crow, Principle and Applications of Electrochemistry,高立,1998. [61]M. A. B. Christopher, A. M. O. Brett, Electrochemistry Principles ,Methods, And Application, Oxford New York, 1993. [62]Operation and service manual, Maxtek. [63]M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon., 42, 2929, 2004. [64]J. I. Paredes, S. Villar-Rodil, P. S. Fernandez, A. M. Alonso, J. M. D. Tascon, Langmuir, 25, 5957, 2009. [65]R. Rajagopalan, J. O. Iroh, Electrochim. Acta, 47, 1847, 2002. [66]W. C. Chen, T. C. Wen, H. S. Teng, Electrochim. Acta, 48, 641, 2003.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3883-
dc.description.abstract本研究成功的利用電化學的方式製備出奈米複合薄膜應用於超級電容,以電化學聚合方式將聚吡咯(polypyrrole, PPy)薄膜修飾於金電極上,再將PPy及石墨烯氧化物(graphene oxide, GO)以電化學聚合方法將其同時修飾於金電極上,最後利用電化學還原法將GO-PPy還原成還原氧化石墨(reduced graphene GO, rGO)-PPy。經由掃描式電子顯微鏡可發現GO與rGO確實與PPy共聚合於金電極上。在電化學分析中,以循環伏安法及阻抗分析法(EIS)對PPy、GO-PPy及rGO-PPy進行電容探討,於電流密度1 A/g 下, PPy、GO-PPy及rGO-PPy在1M硫酸溶液中的比電容值分別為108 F/g、289 F/g及352 F/g,由實驗結果得知還原後的rGO-PPy相較PPy和GO-PPy具有更好的電容行為。zh_TW
dc.description.abstractA nanocomposite film consisted of graphene oxide (GO) and polypyrrole (PPy) was successfully synthesized by electropolymerization which the GO and PPy were deposited on the gold electrode simultaneously. The GO-PPy could be reduced through electrochemical reduction method to obtain reduced graphene oxide (rGO)-PPy. The morphology of PPy, GO-PPy and rGO-PPy nanocomposite films were characterized via scaning electron microscope (SEM). Under three-electrode electrochemical system, the electrocapacitive ability of rGO-PPy modified electrode was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in 1M H2SO4. In comparsion with PPy and GO-PPy, the rGO-PPy had better eletrocapacitive performances in CV and EIS for supercapacitor applications. And the rGO-PPy had a higer specific capacitance of 352 F/g at a current density of 1 A/g discharge current density, which exceeded that of PPy (108F/g) and GO-PPy (289 F/g).en_US
dc.description.tableofcontents總目錄 摘要 i Abstract ii 總目錄 iii 圖目錄 v 表目錄 vii 第一章 序論 1 1-1 前言 1 1-2 導電高分子 2 1-2-1導電高分子的簡介與發展 2 1-2-2導電高分子的導電機制 3 1-2-3聚吡咯的聚合方法及機制 6 1-2-4 導電高分子的應用 8 1-3 石墨烯 9 1-3-1石墨烯簡介 9 1-3-2 石墨烯的製備 14 1-3-3 石墨烯在電化學感測上之應用 19 1-3-4 石墨烯的分散方法 23 1-4 超級電容器 26 1-4-1超級電容器簡介與特性 26 1-4-2超級電容器的分類 27 1-4-3超級電容器之電極材料 30 1-4-4 石墨烯/導電高分子複合材料在超級電容的應用 32 1-5 電化學方法 36 1-5-1循環伏安法(Cyclic voltammetry) 36 1-5-2 安培法(Amperometry) 38 1-5-3 交流阻抗法(Impedance) 40 1-6 石英微量天平應用(Quartz crystal microbalance) 41 第二章 實驗方法與步驟 43 2-1 實驗藥品 43 2-2 實驗儀器 43 2-3 實驗步驟 45 2-3-1氧化石墨的製備 45 2-3-2電極前處理 46 2-3-3電化學聚合PPy薄膜 46 2-3-4電化學聚合GO-PPy薄膜 47 2-3-5電化學聚合rGO-PPy薄膜 47 2-3-6 PPy、GO-PPy及 rGO-PPy之電容特性分析 48 第三章 結果與討論 49 3-1石墨烯氧化物(GO)之探討 49 3-1-1 GO之場發式掃描電子顯微鏡(FE-SEM)表面形貌圖 49 3-1-2 GO之穿透式電子顯微鏡(TEM)表面形貌圖 51 3-1-3 GO之原子力顯微鏡(AFM)表面形貌圖 51 3-1-4 GO之紫外光/可見光(UV-Vis)吸收光譜圖 54 3-2 PPy、GO-PPy、rGO-PPY之電容特性分析 57 3-2-1電化學聚合PPy及GO-PPy薄膜 57 3-2-2電化學還原法製備rGO-PPy薄膜 60 3-2-3 PPy、GO-PPy與rGO-PPy修飾金電極之表面形貌分析 62 3-2-4 循環伏安法分析 67 3-2-5交流阻抗法分析 70 3-2-6定電流充放電測試 71 第四章 結論及未來展望 74 4-1結論 74 4-2未來展望 74 第五章 參考文獻 75zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107201112121900en_US
dc.subjectPolypyrroleen_US
dc.subject聚吡咯zh_TW
dc.subjectGrapheneen_US
dc.subjectSupercapacitoren_US
dc.subjectElectropolymerizationen_US
dc.subject石墨烯zh_TW
dc.subject超級電容zh_TW
dc.subject電化學聚合zh_TW
dc.title聚吡咯/石墨烯奈米複合材料做為超級電容之探討zh_TW
dc.titleSupercapacitor based on polypyrrole/graphene nanocompositeen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.