Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3886
標題: UV硬化丙烯酸酯與蒙脫土奈米複合材料之製備與物性分析
Preparation and Physical Properties of UV Curable Acrylate / Montmorillonite Nanocomposites
作者: 劉威毅
Liu, Wei-Yi
關鍵字: Montmorillonite;奈米蒙脫土;Nanohybrid;UV Cure;Acrylate;奈米混成;UV硬化;亞克力
出版社: 化學工程學系所
引用: 1. 柯揚船, “聚合物-無機奈米複合材料”, 第2 頁至第35 頁, 五南圖書公司, 台北市, 初版 (2004) 2. 漆宗能, 尚文宇, “聚合物/層狀矽酸鹽奈米複合材料”, 第11 頁至第41 頁, 五南圖書公司, 台北市, 初版 (2004) 3. J. A. Brydson, 范啓明, “塑膠材料”, 第423 頁至第451頁, 大中國圖書公司, 台北市, 初版 (1989) 4. 周宗華, 林建中, “高分子材料”, 第386 頁至第395頁, 新文京開發出版有限公司, 台北市, 初版 (2005) 5. C. Decker, K. Zahouily, L. Keller, S. Benfarhi, T. Bendaikha, J. Baron, Journal of Materials Science, 37, 4831-4838 (2002) 6. 陳劉旺, “工業塗料與高分子化學”, 第249 頁至第274頁, 高立圖書有限公司, 台北市, 初版 (1997) 7. Mingwei Zhao, Liqiang Zheng, Xiangtao Bai, Na Li, Li Yu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346, 229-236 (2009) 8. Mihai Polverejan, Thomas R. Pauly, Thomas J. Pinnavaia, Chemistry of Materials, 12, 2698-2704 (2000) 9. Sadok Letaief , Eduardo Ruiz-Hitzky, Chemical Communication, 24, 2996-2997 (2003) 10. Liangming Wei, Tao Tang , Baotong Huang, Microporous and Mesoporous Materials, 67, 175-179 (2004) 11. Minori Nakatsuji, Ryo Ishii, Zheng-Ming Wang, Kenta Ooi, Journal of Colloid and Interface Science, 272, 158-166 (2004) 12. Sadok Letaief, M. Angeles Martin Luengo, Pilar Aranda, and Eduardo Ruiz-Hitzky, Advanced Functional Materials, 16, 401-409 (2006) 13. Zhongzhong Qian, Guangjun Hu, Shimin Zhang, Mingshu Yang, Physica B, 403, 3231-3238 (2008) 14. Huihui Mao, Xiaoxin Gao, Jihe Yang a, Baoshan Li, Applied Surface Science, 257, 4655-4662 (2011) 15. Jengyue Wu, Jeffrey H. Harwell, and Edgar A. O''Rear, Langmuir, 3, 531-537 (1987) 16. Jengyue Wu, Jeffrey H. Harwell, and Ed A. O’Rear, The Journal of Physical Chemistry, 91, 623-634 (1987) 17. John H. O''Haver, Jeffrey H. Hamell, Edgar A. O''Rear, Linda J. Snodgrass, and Walter H. Waddell, Langmuir, 10, 2588-2593 (1994) 18. Thirawudh Pongprayoon, Nantaya Yanumet, and Edgar A. O’Rear, Journal of Colloid and Interface Science, 249, 227-234 (2002) 19. Ampornphan Siriviriyanun, Edgar A. O’Rear, Nantaya Yanumet, Journal of Applied Polymer Science, 103, 4059-4064 (2007) 20. Xaoan Fu, Syed Qutubuddin, Materials Letters, 42, 12-15 (2000) 21. Xaoan Fu, Syed Qutubuddin, Polymer, 42, 807-813 (2001) 22. Chen-Rui Tseng, Jeng-Yue Wu, Hsin-Yi Lee, Feng-Chih Chang, Journal of Applied Polymer Science, 85, 1370-1377 (2002) 23. Mingzhe Xu, Yeong Suk Choi, Yoon Kyung Kim, Ki Hyun Wang, In Jae Chung, Polymer, 44, 6387-6395 (2003) 24. Periyayya Uthirakumar, Min-Ki Song, Changwoon Nah, Youn-Sik Lee, European Polymer Journal, 41, 211-217 (2005) 25. Fawn M. Uhl, Siva Prashanth Davuluri, Shing-Chung Wong, Dean C. Webster, Chemical Material, 16, 1135-1142 (2004) 26. B. S. Shemper, J.-F. Morizur, M. Alirol, A. Domenech, V. Hulin, L. J. Mathias, Journal of Applied Polymer Science, 93, 1252-1263 (2004) 27. Christian Decker, Laurent Keller, Khalid Zahouily, Said Benfarhi, A. Priola, Polymer, 46, 6640-6648 (2005) 28. Fawn M. Uhl, Dean C. Webster, Siva Prashanth Davuluri, Shing-Chung Wong, European Polymer Journal, 42, 2596-2605 (2006) 29. Junzuo Wang, Paul A. Wheeler, William L. Jarrett, Lon J. Mathias, Journal of Applied Polymer Science, 106, 1496-1506 (2007) 30. G. Malucelli, R. Bongiovanni, M. Sangermano, S. Ronchetti, A. Priola, Polymer, 48, 7000-7007 (2007) 31. Hailin Tan, Dongzhi Yang, Jing Han, Ming Xiao, Jun Nie, Applied Clay Science, 42, 25-31 (2008) 32. Xiaohua Qin, Ya Wu, Kemin Wang, Hailin Tan, Jun Nie, Applied Clay Science, 45, 133-138 (2009) 33. Ayhan Oral, Mehmet Atilla Tasdelen, Adem Levent Demirel, Yusuf Yagci, Polymer, 50, 3905-3910 (2009) 34. Veronic Landry, Pierre Blanchet, Bernard Riedl, Progress in Organic Coatings, 67, 381-388 (2010) 35. 陳柏璿, “聚對苯二甲酸二乙酯/改質蒙脫土奈米複合材料之製備與物性分析”, 中興大學化學工程研究所碩士論文 (2009) 36. 曾子凡, “製備主客型黏土/二氧化矽奈米混成材料及其聚苯乙烯奈米複合材料與物性分析”, 中興大學化學工程研究所博士論文 (2010) 37. Fusheng Li, Shuxue Zhou, Limin Wu, Journal of Applied Polymer Science, 98, 2274-2281 (2005) 38. 蔡茜茜, “含C=C雙鍵之蒙脫土之苯乙烯之聚合研究”, 中興大學化學工程研究所碩士論文 (2001) 39. 詹益池, “蒙脫土表面聚合苯乙烯製備奈米複合材料與物性分析”, 中興大學化學工程研究所碩士論文 (1999) 40. 簡正豐, “聚苯乙烯/蒙脫土奈米複合材料界面改質之研究”, 中興大學化學工程研究所碩士論文 (2000) 41. Dong Choo Lee and Lee Wook Jang, Journal of Applied Polymer Scienc, 61, 1117-1122 (1996) 42. Lakhya Jyoti Borthakur, Dhaneswar Das, Swapan K. Dolui, Materials Chemistry and Physics, 124, 1182-1187 (2010) 43. D. Stojanovic, A. Orlovic, S.B. Glisic, S. Markovic, V. Radmilovic, P.S. Uskokovic, R. Aleksic, The Journal of Supercritical Fluids, 52, 276-284 (2010)
摘要: 
本研究先將蒙脫土改質後,再以紫外光聚合法製備聚丙烯酸酯/蒙脫土之奈米複合材料薄膜。UV硬化樹脂分別為親水性的乙氧化三羥甲基丙烷三丙烯酸酯 (Ethoxylated trimethylopropane Triacrylate, ETTA)及1, 6-己二醇二丙烯酸酯 (1, 6-Hexanediol diacrylate, HDDA)。首先將蒙脫土先吸附改質矽烷 (Modified silane, MS),再加入四乙氧基矽烷 (Tetraethyl orthosilicate, TEOS)在蒙脫土表面生成二氧化矽,形成蒙脫土/二氧化矽奈米混成材料 (Clay/SiO2 Nanohybrids, CSN),之後與3-(三甲氧基矽)-1-丙醇甲基丙烯酸 ﹝3-(Trimethoxy silyl)-1-propanol methacrylate, MPS﹞反應,使二氧化矽表面上具有C=C雙鍵,形成蒙脫土/二氧化矽奈米混成材料接枝MPS (CSN-M)。最後甲基丙烯酸甲酯 (Methyl methacrylate)及苯乙烯(Styrene)以吸附微胞聚合法 (Admicellar polymerization)聚合於蒙脫土表面。聚甲基丙烯酸甲酯具有極性羰基 (C=O官能基),與ETTA及HDDA的極性官能基產生作用,此作用可進一步幫助親油及親水的丙烯酸酯進入蒙脫土層間。
MS處理至蒙脫土表面製備成CSN,由FTIR分析得知,在CSN中發現Si-O-Si拉伸振動峰。由SEM分析發現,二氧化矽形成於蒙脫土表面。由TGA得知,CSN接枝MPS的接枝量為0.84 m-mole MPS/g CSN,且在FTIR光譜中出現C=C雙鍵拉伸振動峰。由XRD分析得知,CSN為脫層結構。由EDS能量散佈分析得知,CSN接枝MPS後Si/Al原子量比增加。之後添加不同苯乙烯/甲基丙烯酸甲酯重量比後,進行吸附微胞聚合後得到改質蒙脫土,由FTIR分析得知,吸附微胞聚合後出現苯乙烯及甲基丙烯酸甲酯特徵峰。
以紫外光聚合法製備丙烯酸酯 (ETTA及HDDA)/改質蒙脫土奈米複合材料薄膜,由XRD分析得知,複材中蒙脫土均為脫層結構。由SEM破壞紋路分析發現,純PMMA改質蒙脫土與ETTA及HDDA的分散性較商業蒙脫土佳。在添加1wt% 蒙脫土,ETTA/改質蒙脫土複材之玻璃轉移溫度從-44.6 ℃提升至-41.6 ℃,HDDA/改質蒙脫土複材之玻璃轉移溫度從92.4 ℃提升至96.1 ℃,顯示蒙脫土會阻礙高分子鏈段的移動性。由鉛筆硬度測試分析結果發現,在添加1 wt% 蒙脫土,ETTA/改質蒙脫土複材之表面硬度從3 H提升至6 H,HDDA/改質蒙脫土複材之表面硬度從6 H提升至8 H。由UV-vis光譜分析得知,固定添加1% 蒙脫土含量下,ETTA/改質蒙脫土複材之透光度從98.94 % 降低至96.81 %,ETTA/Cloisite 15A複材之透光度從98.94 % 降低至96.81 %,ETTA/Cloisite 30B複材之透光度從98.94 % 降低至93.40 %;另一方面,HDDA/改質蒙脫土複材之玻璃轉移溫度從98.74 ℃降低至97.14 ℃,HDDA/Cloisite 15A複材之透光度從98.74 % 降低至96.81 %,HDDA/Cloisite 30B複材之透光度從98.74 % 降低至96.54 %。丙烯酸酯添加改質蒙脫土後,透光度輕微下降,表示改質蒙脫土在丙烯酸酯的分散性良好。

In this study, the montmorillonite was modified to prepare acrylate/ montmorillonite nanocomposites film by UV polymerization. UV curable monomers employed are the hydrophilic ethoxylated trimethyl opropane triacrylate (ETTA) and hydrophobic 1, 6-Hexanediol diacrylate (HDDA). The montmorillonite treated with a modified silane (MS), and then tetraethyl orthosilicate (TEOS) was added to form nanosilica particles on the clay surface. Then, the reaction of 3- (Trimethoxy silyl)-1-propanol methacrylate (MPS) on Clay/SiO2 nanohybrids (CSN) was done to bring the C=C function groups. Finally, styrene and methyl methacrylate were polymerized on Clay/SiO2 nanohybrids by admicellar polymerization.
MS was added to clay for the preparation of Clay/SiO2 nanohybridss. The Si-O vibrational stretching from Clay/SiO2 nanohybrids is revealed by FTIR. SiO2 nanoparticles on the clay surface were observed by SEM. Via XRD analysis, we found that Clay/SiO2 nanohybrids exhibitting no diffraction peaks from 1.5 to 8 degree by WAXD, suggesting the distance of interlayers of modified clay above 5.88 nm (1.5°). Via TGA, we evaluated the amount of grafted MPS in Clay/SiO2 nanohybrids as 0.84 m-mole MPS/g CSN. The Si/Al atomic ratio of Clay/SiO2 increases with MPS as measured by Energy Dispersive X-ray Spectroscopy (EDS). The C=C vibrational stretching belonging to MPS grafted on silica was confirmed by FTIR. For admicellar polymerization, styrene and methyl methacrylate monomers at different weight ratio were added to obtain poly(styrene-co-methyl methacrylate) on Clay/SiO2 nanohybrids. The characteristic peaks of styrene and methyl methacrylate were observed from FTIR.
Subsequently, acrylate/modified montmorillonite nanocomposites were prepared by UV polymerization. Via the fracture surface texture by SEM, the dispersion of PMMA modified montmorillonite in polyacrylates is better than that of commercial montmorillonites. Commercial montmorillonites employed are the Cloisite 15A and Cloisite 30B. In the polymerized ETTA/modified montmorillonite nanocomposites studied by DSC, we found the Tg of polymerized ETTA increased from -44.6 ℃ to -41.6 ℃. On the other hand, the Tg of polymerized HDDA increased 3.7 ℃ from 92.4 ℃ to 96.1 ℃ in the polymerized HDDA/modified montmorillonite nanocomposites. This is explained by the confinement of polymer chains embedded in the montmorillonite gallery and limits their segmental motions. In the polymerized ETTA/modified montmorillonite nanocomposites studied by pencil hardness test, the hardness increased from 3 H to 6 H. On the other hand, the hardness increased from 6 H to 8 H in the polymerized HDDA/modified montmorillonite nanocomposites. Comparing the transmission data at 500 nm by UV-vis,The transmission decreased from 98.94 % to 96.81 % in polymerized ETTA/modified montmorillonite nanocomposites. On the other hand, the transmission decreased from 98.74 % to 97.14 % in the polymerized HDDA/modified montmorillonite nanocomposites. The transmission of polymerized ETTA and HDDA films were slightly affected by the presence of the clay/SiO2 nanohybrids due to its good dispersion.
URI: http://hdl.handle.net/11455/3886
其他識別: U0005-1108201121322800
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.