Please use this identifier to cite or link to this item:
標題: 以具有立體障礙結構之碳二亞胺中間體為原料利用二元異氰酸鹽與二元酸透過新穎連續自我反覆反應(New SSRR)合成具有明確結構聚醯胺高分子之合成機制探討以及其相關應用
Well-Defined Polyamide Synthesis from Diisocyanates and Diacids Involving Hindered Carbodiimide Intermediates through New Sequential Self-Repetitive Reaction: Mechanism and Application
作者: 陳衍良
Chen, An-Liu
關鍵字: Polyamides;聚醯胺高分子;New SSRR mechanism;Controlled polymerization;Poly-condensation, Well-defined polymerization;Narrowed MW distribution;新穎連續自我反覆反應機制;控制聚合;聚縮合;明確結構聚合;窄分子量分佈
出版社: 化學工程學系所
引用: 1. Klaikherd, A.; Ghosh, S.; Thayumanavan, S. Macromolecules 2007, 40, 8518-8520. 2. Dong, H.; Tang, W.; Matyjaszewski, K. Macromolecules 2007, 40, 2974-2977. 3. Dire, C.; Charleux, B.; Magnet, S.; Couvreur, L. Macromolecules 2007, 40, 1897-1903. 4. Phan, T. N. T.; Bertin, D. Macromolecules 2008, 41, 1886-1895. 5. Rzayev, J.; Penelle, J. Angew. Chem., Int. Ed. 2004, 43, 1691-1694. 6. Cheng, C.; Sun, G.; Khoshdel, E.; Wooley, K. L. J. Am. Chem. Soc. 2007, 129, 10086-10087. 7. You, Y. Z.; Zhou, Q. H.; Manickam, S. D.; Wan, L.; Mao, G. Z.; Oupicky, D. Macromolecules 2007, 40, 8617-8624. 8. Hawker, C. J.; Bosman, A. W.; Harth E. Chem. Rev. 2001, 101, 3661-3688. 9. Sciannamea V.; Je'roˆme R.; Detrembleur C. Chem. Rev. 2008, 108, 1104-1126. 10. Yokozawa, T.; Asai, T.; Sugi, R.; Ishigooka, S.; Hiraoka, S. J. Am.Chem. Soc. 2000, 122, 8313-8314. 11. Yokozawa, T.; Ogawa, M.; Sekino, A.; Sugi, R.; Yokoyama, A. J. Am. Chem. Soc. 2002, 124, 15158-15159. 12. Yokoyama, A.; Yokozawa, T. Macromolecules 2007, 40, 4093-4101. 13. Yokozawa, T.; Yokoyama, A. Prog. Polym. Sci. 2007, 32, 147-172. 14. Yokoyama, A.; Masukawa, T.; Yamazaki, Y.; Yokozawa, T. Macromol. Rapid Commun. 2009, 30, 24-28. 15. Yokozawa, T.; Yokoyama, A. Chem. Rev. 2009, 109, 5595-5619. 16. Yoshino, K.; Yokoyama, A.; Yokozawa, T. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6328-6332 17. Ohishi, T.; Masukawa, T.; Fujii, S.; Yokoyama, A.; Yokozawa, T. Macromolecules 2010, 43, 3206-3214. 18. Yoshino, K.; Hachiman, K.; Yokoyama, A.; Yokozawa, T. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1357-1363. 19. Kim, Y. J.; Seo, M.; Kim, S. Y. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1049-1057. 20. Lee, I. M.; Gauthier W. J.; Ball, J. M.; Iyengar B.;Collins S. Organometallics 1992, 11, 2115-2122 21. Chum, S.; Kruper, W. J.; Guest, M. J. Adv. Mater. 2000, 12, 1759-1767. 22. Wittcoff, H. A.; Reuben, B. G. in Industrial Organic Chemicals 2nd Edition: John Wiley & Sons Publishers: New York, 1996. 23. Kent, J. A. in Handbook of Industrial Chemistry 9th Edition: Kluwer Academic Publish: New York, 1992. 24. Wei, K. L.; Wu, C. H.; Huang, W. H.; Lin, J. J.; Dai, S. A. Macromolecules 2006, 39, 12-14. 25. Chen, C. W.; Cheng, C. C.; Dai, S. A. Macromolecules 2007, 40, 8139-8141. 26. Campbell, T. W.; Monagle, J. J. J. Am. Chem. Soc. 1962, 84, 1493. 27. Schotman, A. H. M. Trav. Chim. Pays-Bas 1991, 110, 319-324. 28. Schotman, A. H. M.; Mijs, W. J. Trav. Chim. Pays-Bas 1992, 111, 88-91. 29. Schotman, A. H. M.; Weber, T. M. J.; Mijs, W. J. Macromol. Chem. Phys. 1999, 200, 635-641. 30. Dai, S. A.; Lin, J. J.; Wei, K. L. US Patent 7,935,779 B2, 2011. 31. Chang, H. L.; Lin, H. L.; Wang, Y. C.; Dai, S. A.; Su, W. C.; Jeng, R. J. Polymer 2007, 48, 2046-2055. 32. Lin, H. L.; Chao, T. Y.; Shih, Y. F.; Dai, S. A.; Su, W. C.; Jeng, R. J., Polym. Adv. Technol. 2008, 19, 984-992. 33. Lin, H. L.; Chang, H. L.; Juang, R. H.; Dai, S. A.; Liu, Y. L.; Jeng, R. J. Dyes Pigm. 2009, 82, 76-83. 34. Lin, H. L.; Juang, T. Y.; Chan, L. H.; Lee, R. H.; Dai, S. A.; Liu, Y. L.; Sue, W. C.; Jeng, R. J. Polym. Chem. 2011, 2, 685-693. 35. Ulrich, H. In Chemistry and Technology of Carbodiimides: John Wiley & Sons Publishers: England, 2007; p 30 and p 60.
本研究發展了一個新穎的聚縮合反應方法,透過改良之前本實驗室所發展出之連續自我反覆反應機制(SSRR),如今己可進一步合成具有明確結構(well-defined)與窄分子量分佈(narrowed MWD distribution)的聚醯胺高分子(PA),這一控制PA高分子分子量的策略不但具學理上之新穎性, 亦可簡便地實施於低價常用之工業原料上,而製得高性能的尼龍產物。在我們研究發現祇要在合成過程中預先添加一個具有立體障礙(hindered) 之 CDI單體(如iPr-CDI)或異氰酸鹽(如iPr-NCO)當作反應的起始劑,接著在反應溶液中緩慢同步加入約等摩爾數之二元異氫酸鹽與二元酸單體,藉由此新的合成方法,SSRR機制所反應產生出來的聚醯胺高分子具有明顯狹窄的分子量分佈(PDI下降為1.2~1.4,相較於正常的SSRR所生成的PDI>2.5)。此過程中新生成出帶有hindered iPr-NCO的中間產物扮演著非常重要的角色,透過它可使得在連續反應中持續而反覆地再生末端帶有非對稱hinded-CDI的重要中間產物,提供在SSRR循環中合成醯胺鏈段,並能夠在均一位置無障礙的CDI鏈上從事選擇性之成長,因而達到精準控制其分子量的目的。此新穎合成聚醯胺的新法不但具特殊非傳統性之反應機構,特別是它提供我們能夠成功地合成出量身訂做之結晶型和可溶性聚醯胺高分子,並且此類新合成之聚醯胺高分子,莫爾計量需控制在1/5/5到1/20/20範圍內,均具有明確結構與明顯的狹窄分子量分佈(分子量分佈為1.2到1.4)。

We have uncovered a novel polycondensation strategy for the synthesis of well-defined polyamides of narrow molecular weight distributions based on modifications of the sequential self-repetitive reaction (“SSRR”) previously developed for diisocyanate-dicarboxylic acid polymerization. In this newly discovered SSRR polyamide formation mechanism, a small amount of hindered carbodiimide, N,N'-bis(2,6-diisopropylphenyl) carbodiimide (iPr-CDI) or a hindered isocyanate such as 2,6-diisopropylphenyl isocyanate (iPr-NCO), was introduced to the polymerization as an initiator, followed by simultaneous addition of methylenediphenylene diisocyanate (MDI) and diacids monomers. By using this new reaction mode, the SSRR mechanism produces polyamide products of narrow molecular weight distributions with their dispersities reduced to 1.2-1.4, which is far lower than a range of >2.5 found in regular SSRR reactions. Significantly different from a conventional step-growth or standard SSRR reaction, the formation of a polymer backbone is preferential when the diacid is added to the requisite iPr-CDI in the first step, followed by a rearrangement to form amide and fragmented components for SSRR. The control of molecular weight is mainly attributed to the acid addition favoring the unhindered poly-CDI intermediates in the middle of the growing chains over the hindered-CDI at the chain terminals. It appears that the formation of a “hindered isocyanate” and the subsequent formation of a “new hindered-CDI” at the terminal end of growing amide-chains in each SSRR cycle force the acid again toward the preferred unhindered CDI sites dictating the observed outcome. This simple polyamide synthesis methodology is unique and unconventional. Particularly, it has facilitated us to synthesize tailored-made recrystalline and soluble polyamides from MDI and varieties of diacids. These well-defined polyamides maintain their dispersity ranges from 1.2 to 1.4 with their relative ratios of 1/5/5 till 1/20/20.
其他識別: U0005-1205201117003600
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.