Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3890
標題: 線性低密度聚乙烯/改質蒙脫土奈米複合材料 製備與物性分析
Preparation and Physical Properties of Linear Low Density Polyethylene/Modified Montmorillonite Nanocomposites
作者: 陳鵬輝
Chen, Ping-Hui
關鍵字: Montmorillonite;蒙脫土;Linear Low Density Polyethylene;Nanocomposites;線性低密度聚乙烯;複合材料
出版社: 化學工程學系所
引用: 1. 柯楊船, 聚合物-無機奈米複合材料, 第51頁至52頁, 五南圖書出版公司, 台北市 (2004) 2. 馬振基, “高分子複合材料”, 上冊, 第3頁至第15頁, 正中出版社, 台北市, 初版;下冊, 第3頁至第14頁, 正中出版社, 台北市, 初版 (2006) 3. 何經, 呂佳燕, 黃勝明, “高分子材料”, 第22頁到25 頁, 複文書局,台北市 (2004) 4. 黃振隆, 葉芳耀, 陳玟溢, 林美秀,“工業材料雜誌”, 第 134 頁至第140頁, 第224期,化學工業出版社, 新竹市 (2005) 5. 漆宗能, 尚文宇, 聚合物/層狀矽酸鹽奈米複合材料, 第2頁至第4頁, 五南圖書出版公司, 台北市 (2004) 6. Sadok, L., Eduardo, R. H., Chem. Commun., 24, 2996 (2003) 7. Toshiaki Nakao, Masayuki Nogami, Materials Letters, 59, 3221-3225 (2005) 8. Wuguo Bi, Rongjun Song, Xiaoyu Meng, Zhiwei Jiang, Shiyun Li, Tao Tang, Nanotechnology, 18, 1156-1164 (2007) 9. Baoshan Li, Huihui Mao, Xiao Li, Wei Ma, Zhenxing Liu, Journal of Colloid and Interface Science, 336, 244–249 (2010) 10. S. Javan Nikkhah, A. Ramazani S. A., H. Baniasadi, F. Tavakolzadeh, Materials and Design, 30, 2309-2315 (2009) 11. Cristian Covarrubias, Raul Quijada, Journal of Membrane Science, 358, 33-42 (2010) 12. Changyi Ren, Xiaohua Du, Li Ma, Yanhui Wang, Tao Tang, Journal of Applied Polymer Science, 117, 1646-1657 (2010) 13. M. Kato, H. Okamoto, N. Hasegawa, A. Tsukigase, A. Usuki, Polymer Engineering and Science, 43, No 6 (2003) 14. S. Hotta, D. R. Paul, Polymer, 45, 7639-7654 (2004) 15. Shaofeng Wang, Yuan Hu, Yong Hu, Zhengzhou Wang, Zuyao Chen, Weicheng Fan, Journal of Applied Polymer Science, 89, 2583-2585 (2004) 16. Chungui Zhao, Meng Feng, Fangling Gong, Huaili Qin, Mingshu Yang, Journal of Applied Polymer Science, 93, 676-680 (2004) 17. Joong-Hee Lee, Daeseung Jung, Chang-Eui Hong, Kyong Y. Rhee, Suresh G. Advani, Composites Science and Technology, 65, 1996-2002 (2005) 18. Mingqian Zhang, Uttandaraman Sundararaj, Macromol. Mater. Eng., 291, 697-706 (2006) 19. Saul Sanchez-Valdes, M. L. Lopez-Quintanilla, E. Ramirez-Vargas, Francisco J. Medellin-Rodriguez, Juan M. Gutierrez-Rodriguez, Macromol. Mater. Eng., 291, 128-136 (2006) 20. Ail Durmus, Ahmet Kasgoz, Christopher W. Macosko, Polymer 48, 4492-4502 (2007) 21. Ail Durmus, Maybelle Woo, Ahmet Kasgoz, Christopher W. Macosko, Michael Tsapatsis, European Polymer Journal, 43, 3737-3749 (2007) 22. Supong Arunvisut, Sutthipat Phummanee, Anongnat Somwangthan aroj, Journal of Applied Polymer Science, 106, 2210-2217 (2007) 23. Yang Zhong, Dustin Janes, Yong Zheng, Max Hetzer, Daniel De Kee, Polymer Engineering and Science, 42, 1101-1107 (2007) 24. E. Picard, H. Gauthier, J.-F. Gerard, E.Espuche, Journal of Colloid and Interface Science, 307, 364-376 (2007) 25. S. Nazarenko, P. Meneghetti, P. Julmon, B. G. Olson, S. Outubuddin, Journal of Polymer Science, Part B , Polymer Physics, 45, 1733-1753 (2007) 26. Nielsen LE. Models for the permeability of filled polymer system. J Macromol Sci Part A Pure Appl Chem,1, 929-942 (1967) 27. Karen Stoeffler, Pierre G. Lafleur, Johanne Denault, Polymer Engineering and Science,65, 2459-2473 (2008) 28. E. Picard, A, Vermogen, J-F. Gerard, E. Espuche, Journal of Polymer Science, Part B, Polymer Physics, 46, 2593-2604 (2008) 29. Shyh-Shin Hwang, Peming P. Hsu, Jui-ming Yeh, Jui-Pin Yang, Kung-Chin Chang, Ying-Zhong Lai, International Communications in Heat and Mass Transfer, 38, 471-479 (2009) 30. Dong-Woo Jin, Sung-Mok Seol, Gue-Hyun Kim, Journal of Applied Polymer Science, 114, 25-31 (2009) 31. R. Rezanavaz, M. K. Razavi Aghieh, A. A. Babaluo, Polymer Composites, 49-55 (2010) 32. Ahmad Mohaddespour, Seyed Javad Ahmadi, Hossein Abolghasemil Polymer Composites, 2210-2218 (2010) 33. S. M. Ali Dadfar, I. Alemzadeh, S. M. Reza Dadfar, M. Vosoughi, Materials and Design, 32, 1806-1813 (2011) 34. 陳伯璿,“聚對苯二甲酸二乙酯/改質蒙脫土奈米複合材料之製備與物性分析”, 中興大學化學工程研究所碩士論文 (2008) 35. Sadok Letaief, M. Angeles Martin Luengo, Pilar Aranda, and Eduardo Ruiz-Hitzky, Advanced Functional Materials, 16, 401-409 (2006) 36. 曾子凡, “製備主客型蒙脫土/二氧化矽奈米混成材料及其聚苯乙烯奈米複合材料與物性分析”,中興大學化學工程研究所博士論文 (2010) 37. Jyongsik Jang, Junyeob Lee, Jongkoo Jeong, Journal of Applied Polymer Science, 56, 1651-1660 (1995) 38. Jyongsik Jang, Junyeob Lee, Jongkoo Jeong, Journal of Applied Polymer Science, 56, 1651–1600 (1995) 39. An-Ting Chien, Yuan-Haun Lee, King-Fu Lin, Journal of Applied Polymer Science, 109, 355–362 (2008) 40. 詹益池,“蒙脫土表面聚合苯乙烯製備奈米複合材料與物性分析”,中興大學化學工程研究所碩士論文 (1999) 41. Yong-Hyun Jin, Hong-Jo Park, Seung-Soon Im, Seung-Yeop Kwak, Soonjong Kwak, Macromol. Rapid Commun., 23, 135-140 (2003)
摘要: 
本研究目的是利用線性低密度聚乙烯 (Linear low density polyethylene, LLDPE)和改質蒙脫土,及相容劑為聚乙烯接枝馬來酸酐(Polyethylene grafted Melated Anhydride, PEgMA),以進行熔融混煉得到LLDPE/改質蒙脫土奈米複合材料,並探討此複材之物理分析。將改質蒙脫土製備方式是先將蒙脫土吸附改質矽烷 (Modified Silane, MS),再利用四乙氧基矽烷 (Tetraethylorthosilicate, TEOS),在蒙脫土表面上生成二氧化矽粒子,其中蒙脫土和二氧化矽重量比分別為1:2和1:1。接著與甲基丙烯氧基丙基三甲氧基矽烷 (Methacryl oxypropyl trimethoxy silane, MPS)反應,使二氧化矽表面上帶有C=C官能基。之後以表面聚合法在蒙脫土表面上接枝親油性高分子。由FT-IR分析,改質蒙脫土可以發現帶有環氧基的GMA接枝二氧化矽後,在910 cm-1位置的穿透峰有明顯出現,表示GMA成功接枝在改質蒙脫土。由XRD分析,改質蒙脫土在1.5°~8°之間,並無產生繞射峰。
在LLDPE/改質蒙脫土複材,由XRD分析,複材在1.5°~ 8°之間,並無產生繞射峰。由FESEM分析,複材中改質蒙脫土含量為5.20 phr時,其斷裂面看出提升高分子界面強度。由DSC分析,複材中改質蒙脫土並不會影響到高分子的熔點改變。由TGA分析,複材中改質蒙脫土 (MMT:SiO2 = 1:1)含量為2.60 phr在重量損失 10 %時,明顯提升5.5 ℃。在DMA分析,在40 ℃之儲存模數,複材中改質蒙脫土 (MMT:SiO2 = 1:1)含量為5.20 phr從1.52×108 Pa提升到3.74×108 Pa。在拉伸測試分析,複材中改質蒙脫土 (MMT:SiO2 = 1:1)含量為5.20 phr,楊氏係數明顯提升98.8 %。透水分析中,複材中改質蒙脫土 (MMT:SiO2 = 1:1)含量為5.22 phr,水氣透過率明顯下降26.9 %。透氧分析中,複材中改質蒙脫土 (MMT:SiO2 = 1:1)含量為5.22 phr,氧氣透過率明顯下降18.6 %。

In this study, the linear low density polyethylene ( LLDPE ) , the modified clay, and the compatibilizer of maleic anhydride grafted polyethylene ( PEgMA), were melt blended to prepare the linear low density polyethylene / modified clay nanocomposites together with the physical properties measured for these nanocomposites. The preparation of modified clay is done by the synthesis of the modified silane ( Modified Silane, MS ) , adsorpted to clay, and the adding of tetraethyl orthosilicate ( TEOS ) to generate silica particles on clay. The weight ratios of clay and silica are 1: 2 and 1: 1. Then 3- (Trimethoxy silyl)-1-propanol methacrylate (MPS) was added to prepare the modified clay with grafting . By using CTAB, Styrene, GMA, and KPS we proceed the surface polymerization. By FT-IR analysis, the modified clay with the epoxy groups in GMA on grafted silica has the absorbance at 910 cm-1. This confirmed the successful grafting of GMA onto the modified clay. By XRD analysis, the modified clay shows no diffraction peaks between 1.5 ° ~ 8 °.
Linear low density polyethylene / modified clay composites, by XRD analysis, show no diffraction peaks between 1.5 °~8 °. The interfacial strength among clay, silica and LLDPE were improved in the 5.20 phr of modified clay of composites, which was observed by fracture surface in the FESEM analysis. By DSC analysis, LLDPE/clay nanocomposites show similar melting point compared with that of LLDPE. By TGA analysis, the content of modified clay nanocomposites (MMT: SiO2 = 1: 1) with 2.60 phr at 10 % weight loss shows a higher temperature of 5.5 ℃ above. In DMA analysis, the composites with the modified clay (MMT: SiO2 = 1: 1) also enhance the storage modulus (at 40 ℃) from 1.52×108 Pa to 3.74×108 Pa for the content of 5.22 phr. The data of tensile strength for the modified clay nanocomposite (MMT: SiO2 = 1: 1) with a content of 8 phr also improve. The Young''s Modulus improved significantly by 98.8 %. In water permeation analysis, the modified clay nanocomposites (MMT: SiO2 = 1: 1) with a content of 5.22 phr shows the water vapor transmission rate decreased by 26.9 %. In oxygen permeation, the modified clay nanocomposite (MMT: SiO2 = 1: 1) with a content of 5.22 phr gives a lower oxygen transmission rate by 18.6 %
URI: http://hdl.handle.net/11455/3890
其他識別: U0005-1208201116355000
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.