Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3891
標題: 銀改質二氧化鈦奈米管陣列之製備與應用於產氫研究
Study of the silver modified TiO2 nanotube array applied to hydrogen evolution
作者: 黃士晉
Huang, Shi Jin
關鍵字: TiO2;二氧化鈦;nanotube array;anodization;water decomposition to form hydrogen;photocatalyst;奈米管陣列;陽極氧化;水分解產氫;光催化觸媒
出版社: 化學工程學系所
引用: [1] A. Fujishima, K. Honda, Nature 238 (1972) 37-38. [2] M. Gratzel, Nature 414 (2001) 338-344. [3] 經濟部能源局, (2010). [4] F.-W. Chang, H.-Y. Yu, L.S. Roselin, H.-C. Yang, T.-C. Ou, Applied Catalysis A: General 302 (2006) 157-167. [5] Y.Z. Yang, C.H. Chang, H. Idriss, Applied Catalysis B: Environmental 67 (2006) 217-222. [6] S. Bae, E. Shim, J. Yoon, H. Joo, Solar Energy Materials and Solar Cells 92 (2008) 402-409. [7] E.Y. Kim, J.H. Park, G.Y. Han, Journal of Power Sources 184 (2008) 284-287. [8] Z. Liu, B. Pesic, K.S. Raja, R.R. Rangaraju, M. Misra, International Journal of Hydrogen Energy 34 (2009) 3250-3257. [9] W. Nam, S. Oh, H. Joo, S. Sarp, J. Cho, B.-W. Nam, J. Yoon, Solar Energy Materials and Solar Cells 94 (2010) 1809-1815. [10] Z. Zhang, M.F. Hossain, T. Takahashi, International Journal of Hydrogen Energy 35 (2010) 8528-8535. [11] J. Gong, Y. Lai, C. Lin, Electrochimica Acta 55 (2010) 4776-4782. [12] D. U., Surface Science Reports 48 (2003) 177. [13] Surface Science Reports 48 (2003) 53-229. [14] L.L. Costa, A.G.S. Prado, Journal of Photochemistry and Photobiology A: Chemistry 201 (2009) 45-49. [15] C. Jin, R.Y. Zheng, Y. Guo, J.L. Xie, Y.X. Zhu, Y.C. Xie, Journal of Molecular Catalysis A: Chemical 313 (2009) 44-48. [16] Y. Xie, L. Zhou, C. Huang, H. Huang, J. Lu, Electrochimica Acta 53 (2008) 3643-3649. [17] X.-G. Hou, M.-D. Huang, X.-L. Wu, A.-D. Liu, Chemical Engineering Journal 146 (2009) 42-48. [18] M.A. Khan, O.B. Yang, Catalysis Today 146 (2009) 177-182. [19] O. Rosseler, M.V. Shankar, M.K.-L. Du, L. Schmidlin, N. Keller, V. Keller, Journal of Catalysis 269 (2010) 179-190. [20] A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Béguin, S. Bonnamy, Carbon 42 (2004) 1147-1151. [21] T.F.J. Xi Liu, Andrei Kolmakov, Sung-Hyeon Baeck, Martin Moskovits, Galen D. Stucky, Eric W. McFarland Materials Research Society 20 (2005) 1093-1096. [22] J. Wang, Z. Wang, H. Li, Y. Cui, Y. Du, Journal of Alloys and Compounds 494 (2010) 372-377. [23] H. Ishihara, J.P. Bock, R. Sharma, F. Hardcastle, G.K. Kannarpady, M.K. Mazumder, A.S. Biris, Chemical Physics Letters 489 (2010) 81-85. [24] S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, Journal of Catalysis 246 (2007) 362-369. [25] C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, The Journal of Physical Chemistry B 109 (2005) 15754-15759. [26] L. Sun, S. Zhang, X.W. Sun, X. He, Journal of Electroanalytical Chemistry 637 (2009) 6-12. [27] Y. Liu, B. Zhou, J. Bai, J. Li, J. Zhang, Q. Zheng, X. Zhu, W. Cai, Applied Catalysis B: Environmental 89 (2009) 142-148. [28] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Solar Energy Materials and Solar Cells 90 (2006) 2011-2075. [29] P. Xiao, B.B. Garcia, Q. Guo, D. Liu, G. Cao, Electrochemistry Communications 9 (2007) 2441-2447. [30] C.A. Grimes, Journal of Materials Chemistry 17 (2007) 1451-1457. [31] J. Wang, L. Wang, L. Ma, J. Zhao, B. Wang, G. Wang, Physica E: Low-dimensional Systems and Nanostructures 41 (2009) 838-842. [32] O. Piotrowski, C. Madore, D. Landolt, Journal of The Electrochemical Society 145 (1998) 2362-2369. [33] V.C. Anitha, D. Menon, S.V. Nair, R. Prasanth, Electrochimica Acta 55 (2010) 3703-3713. [34] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Letters 6 (2005) 215-218. [35] L. Dong, Y. Ma, Y. Wang, Y. Tian, G. Ye, X. Jia, G. Cao, Materials Letters 63 (2009) 1598-1600. [36] E. Sennik, Z. Çolak, N. KilInç, Z.Z. Öztürk, International Journal of Hydrogen Energy 35 (2010) 4420-4427. [37] C.-J. Lin, W.-Y. Yu, S.-H. Chien, Applied Physics Letters 91 (2007) 233120-3. [38] C.J. Lin, Y.H. Yu, Y.H. Liou, Applied Catalysis B: Environmental 93 (2009) 119-125. [39] K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, D. Losic, Biomaterials 31 (2010) 532-540. [40] C.-J. Lin, W.-Y. Yu, S.-H. Chien, Applied Physics Letters 93 (2008) 133107-3. [41] Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, C.J. Lin, Applied Surface Science 252 (2005) 1101-1106. [42] H. Hirakata, K. Ito, A. Yonezu, H. Tsuchiya, S. Fujimoto, K. Minoshima, Acta Materialia 58 (2010) 4956-4967. [43] K. Shankar, et al., Nanotechnology 18 (2007) 065707. [44] F. Mura, A. Masci, M. Pasquali, A. Pozio, Electrochimica Acta 55 (2010) 2246-2251. [45] J. Bai, J. Li, Y. Liu, B. Zhou, W. Cai, Applied Catalysis B: Environmental 95 (2010) 408-413. [46] J.R. Bolton, Solar Energy 57 (1996) 37-50. [47] A.K. Ghosh, H.P. Maruska, Journal of The Electrochemical Society 124 (1977) 1516-1522. [48] G. Maurer, Chemical Engineering and Processing 28 (1990) 52-53. [49] O.A. Ileperuma, C.T.K. Thaminimulla, W.C.B. Kiridena, Solar Energy Materials and Solar Cells 28 (1993) 335-343. [50] N.-L. Wu, M.-S. Lee, International Journal of Hydrogen Energy 29 (2004) 1601-1605. [51] H.-J. Choi, M. Kang, International Journal of Hydrogen Energy 32 (2007) 3841-3848. [52] K. Sayama, R. Abe, H. Arakawa, H. Sugihara, Catalysis Communications 7 (2006) 96-99. [53] J.S. Jang, H.G. Kim, U.A. Joshi, J.W. Jang, J.S. Lee, International Journal of Hydrogen Energy 33 (2008) 5975-5980. [54] D. Fang, K. Huang, S. Liu, Z. Li, Journal of Alloys and Compounds 464 (2008) L5-L9. [55] S. Xu, D.D. Sun, International Journal of Hydrogen Energy 34 (2009) 6096-6104. [56] L.S. Yoong, F.K. Chong, B.K. Dutta, Energy 34 (2009) 1652-1661. [57] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Nat Mater 2 (2003) 29-31. [58] I. Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Chemical Physics Letters 445 (2007) 233-237. [59] Q. Kang, L. Yang, Q. Cai, Bioelectrochemistry 74 (2008) 62-65. [60] L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Solar Energy Materials and Solar Cells 93 (2009) 1875-1880. [61] H. Liu, G. Liu, Q. Zhou, Journal of Solid State Chemistry 182 (2009) 3238-3242. [62] M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas, M. Anpo, Catalysis Today 120 (2007) 133-138. [63] R. Dholam, N. Patel, M. Adami, A. Miotello, International Journal of Hydrogen Energy 34 (2009) 5337-5346. [64] D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, F.-Q. Tang, Thin Solid Films 516 (2008) 6371-6376. [65] K.-S. Chou, C.-C. Chen, Microporous and Mesoporous Materials 98 (2007) 208-213. [66] Z. Deng, M. Chen, L. Wu, The Journal of Physical Chemistry C 111 (2007) 11692-11698. [67] 呂宗昕, 商周出版 (2003). [68] 林敬二,林宗義, 亞美出版社 (1994). [69] S.L. Lim, Y. Liu, J. Li, E.-T. Kang, C.K. Ong, Applied Surface Science In Press, Corrected Proof. [70] J. Yu, B. Wang, Applied Catalysis B: Environmental 94 (2010) 295-302. [71] J.S. Jang, S.J. Hong, J.Y. Kim, J.S. Lee, Chemical Physics Letters 475 (2009) 78-81. [72] I. Paramasivam, J.M. Macak, P. Schmuki, Electrochemistry Communications 10 (2008) 71-75. [73] M.-S. Park, M. Kang, Materials Letters 62 (2008) 183-187. [74] J. Liu, Y. Sun, Z. Li, S. Li, J. Zhao, International Journal of Hydrogen Energy In Press, Corrected Proof.
摘要: 
氫能源為目前新綠色能源之一。光觸媒經光源照射給予能量後,可使其產生光催化反應,進而利用此光催化反應進行水分解產氫。二氧化鈦為目前較為廣泛研究之光觸媒材料,因其具有良好之化學穩定性、無毒性且製備成本低廉。為使提升光催化之效果,提高光觸媒之比表面積可有效提高光催化反應,故具高規則排列之二氧化鈦將可應用於光電化學電池產氫中。
在本研究中,將以陽極氧化法製備二氧化鈦奈米管陣列,因其具較高之比表面積與單一之電子傳遞方向。製備之條件控制將以不同之電解液組成、陽極氧化電壓、陽極氧化時間與鍛燒溫度,以得到具高規則排列之二氧化鈦奈米管陣列之最適化條件,其光電轉換效率可達10.47%。為提高二氧化鈦奈米管陣列之光催化活性,利用化學還原法將銀還原於二氧化鈦奈米管陣列上,進行二氧化鈦奈米管陣列之改質。經銀改質後之二氧化鈦奈米管陣列,可降低電子電洞對再結合,故其可達到最佳之產氫效率與光電轉換效率,其光電轉換效率可達11.68%。

Hydrogen is a source of clean energy. The photocatalyst applied to water splitting generate hydrogen when it is activated by the light. Many studies have investigated the photocatalysis, and the most extensive photocatalyst is titanium oxide(TiO2). Due to its photo-electrochemical stability, non-toxicity, and low cost for fabrication. Highly ordered TiO2 nanotubes have a potential application for hydrogen generation application from photo electrochemical cell.
This study will synthesize TiO2 nanotube array by the anodization method, since these ordered architecture of nanotube array provide a high specific surface area and a unidirectional electric channel for electron's transport. To achieve the highly order TiO2 nanotube array, the different of electrolyte composition, anodization voltage, anodization time and calcinations temperature have been effectively controlled. The photoconversion efficiency of the TiO2 nanotube array was 10.47%. Further to enhance the photocatalytic activity, an chemical reduction method will be used to dope Ag on the TiO2 nanotube array. In order to avoid the formation of recombination centers for photo-generated electron-hole pairs, the modified TiO2 nanotube array could optimize the hydrogen and photoconversion efficiency. The photoconversion efficiency of the modified TiO2 nanotube array achieves 11.68%.
URI: http://hdl.handle.net/11455/3891
其他識別: U0005-1307201111593600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.