Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3892
DC FieldValueLanguage
dc.contributor戴憲弘zh_TW
dc.contributorShenghong A. Daien_US
dc.contributor林慶炫zh_TW
dc.contributor李榮和zh_TW
dc.contributor陳錦地zh_TW
dc.contributor郭文章zh_TW
dc.contributor莊宗原zh_TW
dc.contributorChing-Hsuan Linen_US
dc.contributorRong-Ho Leeen_US
dc.contributorChin-Ti Chenen_US
dc.contributorWen-Jang Kuoen_US
dc.contributorTzong-Yuan Juangen_US
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.advisorRu-Jong Jengen_US
dc.contributor.author陳英孝zh_TW
dc.contributor.authorChen, Ying-Hsiaoen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T05:33:02Z-
dc.date.available2014-06-06T05:33:02Z-
dc.identifierU0005-1408201114211000zh_TW
dc.identifier.citation第一章 參考文獻 1. G. Destriau, J. Chem. Phys., 1936, 33, 587. 2. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042. 3. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913. 4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539. 5. 陳金鑫, 黃孝文. 夢幻顯示器OLED材料與元件, 2007. 第二章 參考文獻 1. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042. 2. W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 1965, 14, 229. 3. D. P. Williams, M. Schadt, Proc. IEEE., 1970, 58, 476. 4. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films, 1982, 94, 171. 5. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913. 6. M. Fujuhire, J. App. Phys., 1994, 76, 5117. 7. B. H. Cumpston, K. F. Jensen, Appl. Phys. Lett., 1996, 69, 3941. 8. S. J. Wang, W. J. Oldham, R. A. Hudack, G. C. Bazan, J. Am. Chem. Soc., 2000, 122, 5695. 9. H. C. Yeh, R. H. Lee, L. H. Chan, T. Y. J. Lin, C. T. Chen, E. Balasubramaniam, Y. T. Tao, Chem. Mater., 2001, 13, 2788. 10. F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel, J. Salbeck, Adv. Mater., 2000, 12, 130. 11. Y. Geng, D. Katsis, S. W. Culligan, J. J. Ou, S. H. Chen, L. J. Rothberg, Chem. Mater., 2002, 14, 463. 12. T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, Chem. Rev., 2007, 107, 1011. 13. L. H. Chan, H. C. Yeh, C. T. Chen, Adv. Mater., 2001, 13, 1637. 14. L. H. Chan, R. H. Lee, C. F. Hsieh, H. C. Yeh, C. T. Chen, J. Am. Chem. Soc., 2002, 124, 6469. 15. Y. Shirota, Y.Kuwabara, H. Inada, Appl. Phys. Lett., 1994, 65, 807. 16. Z. R. Hong, C. S. Lee, W. L. Li, Y. Shirota, Appl. Phys. Lett., 2000, 81, 2878. 17. I. Y. Wu, J. T. Lin, Y. T. Tao, E. Balasubramaniam, Y. Z. Su, C. W. Ko, Chem. Mater., 2001, 13, 2626. 18. T. K. R. Justin, J. T. Lin, Y. T. Tao, C. W. Ko, J. Am. Chem. Soc., 2001, 123, 9404. 19. S. Tokito, H. Tanaka, K. Noda, A. Okada, Y. Taga, Appl. Phys. Lett., 1997, 70, 1929. 20. K. Katsuma, Y. Shirota, Adv. Mater., 1998, 10, 223. 21. Y. Shirota, J. Mater. Chem., 2000, 10, 1. 22. K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, J. Am. Chem. Soc., 2002, 124, 11576. 23. S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. S. Lee, S. T. Lee, Adv. Funct. Mater., 2005, 15, 1716. 24. Z. K. Peng, S. L. Tao, X. H. Zhang, J. X. Tang, C. S. Lee, S. T. Lee, J. Phys. Chem., C 2008, 112, 2165. 25. 陳金鑫. 黃孝文. 夢幻顯示器 OLED 材料與元件, 2007. 23. Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon, Adv. Mater., 2001, 13, 1690. 24. K. Danel, T. H. Huang, J. T. Lin, Y. T. Tao, C. H. Chuen, Chem. Mater., 2002, 14, 3860. 25. W. J. Shen, R. Dodda, C. C. Wu, F. I. Wu, T. S. Liu, H. H. Chen, C. H. Chen, C. F. Shu, Chem. Mater., 2004, 16, 930. 26. Y. Kan, L. Wang, L. Duan, G. Wu, Y. Qiu, Synth. Met., 2004, 141,245. 27. Y. H. Kim, H. C. Jeong, S. H. Kim, K. Yang, S. K. Kwon, Adv. Funct. Mater., 2005, 15, 1799. 28. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, Y. Y. Chien, Adv. Mater., 2004, 16, 61. 29. T. Li, T. Yamamoto, H. L. Lan, J. Kido, Polym. Adv. Technol., 2004, 15, 266. 30. W. L. Jia, T. McCormick, Q. D. Lin, H. Fukutani, M. Motala, R. Y. Wang, Y. Tao, S. Wang, J. Mater. Chem., 2004, 14, 3344. 31. C. Tang, F. Liu, Y. J. Xia, J. Lin, L. H. Xie, G. Y. Zhong, Q. L. Fan, W. Huang, Org. Electron., 2006, 7, 155. 32. J. N. Moorthy, P. Natarajan, P. Venkatkrishnan, D. F. Huang, T. J. Chow, Org. Lett., 2007, 9, 5215. 33. S. L. Lai, Q. X. Tong, M. Y. Chan, T. W. Ng, M. F. Lo, S. T. Lee, C. S. Lee, J. Mater. Chem., 2011, 21, 1206. 34. J. Shi, C. W. Tang, Appl. Phys. Lett., 2002, 80, 3201. 35. S. W. Wen, M. T. Lee, C. H. Chen, J. Display Technol., 2005, 1, 90. 36. S. Tao, Z. Hong, Z. K. Peng, W. G. Ju, X. H.Zhang, P. F. Wang, S. K. Wu, S. T. Lee, Chem. Phys. Lett., 2004, 397, 1. 37. P. Sonar, M. S. Soh,Y. H. Cheng, J. T. Henssler, A. Sellinger, Org. Lett., 2010, 12, 3292. 38. S. B. Jiao, Y. Liao, X. J. Xu, L. P. Wang, G. Yu, L. M. Wang, Z. M. Su, S. H. Ye, L. Q. Liu, Adv. Funct. Mater., 2008, 18, 2335. 39. A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun., 1979, 635. 40. A . Dall''Olio, Y. Dascola, V. Varacca, V. Bocchi, Comptes. Rendus., 1968, C267, 433. 41. Myers, R. E. J. Electron. Mater., 1986, 15, 61. 42. N. Costantini, S. Capaccioli, M. Geppi, G. Ruggeri, Polym. Adv. Technol., 2000, 11, 27. 43. P. R. Varanasi, A. K. Y. Jen, J. Chandrasekhar, I. N. N. Namboothiri, A. Rathna, J. Am. Chem. Soc., 1996, 118, 12443. 44. A. Facchetti, A.Abbotto, L. Beverina, M. E. van der Boom, P. Dutta, G. Evmenenko, G. A. Pagani, T. J. Marks, Chem. Mater., 2003, 15, 1064. 45. Z. A. Li, Z. Li, C. A. Di, Z. C. Zhu, Q. Q. Li, Q. Zeng, K. Zhang, Y. Q. Liu, C. Ye , J. G. Qin, Macromolecules, 2006, 39,6951. 46. Q. Li, C. Lu, J. Zhu, E. Fu, C. Zhong, S. Li, Y. Cui, J. Qin, Z. Li, J. Phys. Chem., B 2008, 112, 4545. 47. B. C. Thompson, K. A. About, J. R. Reynolds, K. Nakatani, P. Audebert, New J. Chem., 2005, 29, 1128. 48. M. Ak, M. S. Ak, L. Toppare, Macromol. Chem. Phys., 2006, 207, 1351. 49. Y. Chen, W. T. A. Harrison, C. T. Imric, K. S. Ryder, J. Mater. Chem., 2002, 12, 579. 50. Y. Chen, C. T. Imric, K. S. Ryder, J. Mater. Chem., 2001, 11, 990. 51. K. S. Kim, K. Hatanaka, T. Uryu, J. Polym. Sci. Part A: Pol. Chem., 2000, 38, 1214. 52. N. P. H. Nam, S. W. Cha, B. S.Kim, S. H. Choi, D. S. Choi, J. I. Jin, Synth. Met., 2002, 130, 271. 53. L. L. Miller, G. D. Nordblom, E. A. Mayeda, J. Org. Chem., 1972, 37, 916. 54. C. J. Yang, S. A. Jenekhe, Macromolecules, 1995, 28, 1180. 第三章 參考文獻 1. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042. 2. W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 1965, 14, 229. 3. D. P. Williams, M. Schadt, Proc. IEEE., 1970, 58, 476. 4. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films, 1982, 94, 171. 5. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett ., 1987, 51, 913. 6. G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett., 1998, 73, 1185. 7. S. Naka, H. Okada, H. Onnagawa, T. Tsutsui, Appl. Phys. Lett., 2000, 76, 197. 8. Y. Hamada, N. Matsusue, H. Kanno, H. Fujii, T. Tsujioka, H. Takahashi, Jpn. J. Appl. Phys., 2001, 40, L753. 9. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 2000, 111-112, 139. 10. A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater., 2004, 16, 4556. 11. K. Geramita, J. McBee, Y. Shen, N. Radu, T. D. Tilley, Chem. Mater., 2006, 18, 3261. 12. D. F. O''Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E. Thompson, Adv. Mater., 1998, 10, 1108. 13. C. Tang, F. Liu, Y. J. Xia, L. H. Xie, A. Wei, S. B. Li, Q. L. Fan, W. Huang, J. Mater. Chem., 2006, 16, 4074. 14. F. I. Wu, P. I. Shih, M. C. Yuan, A. K. Dixit, C. F. Shu, Z. M. Chung, E. W. G. Diau, J. Mater. Chem., 2005, 15, 4753. 15. L. H. Chan, R. H. Lee, C. F. Hsieh, H. C. Yeh, C. T. Chen, J. Am. Chem. Soc., 2002, 124, 6469. 16. L. H. Chan, H. C. Yeh, C. T. Chen, Adv. Mater., 2001, 13, 1637. 17. J. M. Hancock, A. P. Gifford, Y. Zhu, Y. Lou, S. A. Jenekhe, Chem. Mater., 2006, 18, 4924. 18. M. Y. Lai, C. H. Chen, W. S. Huang, J. T. Lin, T. H. Ke, L. Y. Chen, M. H. Tsai, C. C. Wu, Angew. Chem. Int. Ed., 2008, 47, 581. 19. M. Mazzeo, V. Vitale, F. D. Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani, G. Gigli, Adv. Mater., 2005, 17, 34. 20. T. Noda, H. Ogawa, Y. Shirota, Adv. Mater., 1999, 11, 283. 21. W. L. Jia, D. R. Bai, T. McCormick, Q. D. Liu, M. Motala, R. Y. Wang, C. Seward, Y. Tao, S. Wang, Chem. Eur. J., 2004, 10, 994. 22. W. L. Jia, M. J. Moran, Y. Y. Yuan, Z. H. Lu, S. Wang, J. Mater. Chem., 2005, 15, 3326. 23. Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto, T. Ohara, J. Am. Chem. Soc., 2000, 122, 11021. 24. H. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, Chem. Mater., 2003, 15, 1080. 25. C. D. Entwistle, T. B. Marder, Chem. Mater., 2004, 16, 4574. 26. A. Wakamiya, T. Taniguchi, S. Yamaguchi, Angew. Chem. Int. Ed., 2006, 45, 3170. 27. T. Noda, Y. Shirota, J. Am. Chem. Soc., 1998, 120, 9714. 28. M. Kinoshita, H. Kita, Y. Shirota, Adv. Funct. Mater., 2002, 12, 780. 29. W. L. Jia, X. D. Feng, D. R. Bai, Z. H. Lu, S. Wang, G. Vamvounis, Chem. Mater., 2005, 17, 164. 30. S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen, R. J. Jeng, Adv. Mater., 2008, 20, 3947. 31. S. Yamaguchi and A. Wakamiya, Pur. Appl. Chem., 2006, 78, 1413. 32. J. F. Morin, M. Leclerc, D. Ades, A. Siove, Macromol. Rapid Commun., 2005, 26, 761. 33. K. R. J. Thomas, J. T. Lin, Y. T. Tao, C.W. Ko, J. Am. Chem. Soc., 2001, 123, 9404. 34. Z. Q. Liu, Q. Fang, D. Wang, D. X. Cao, G. Xue, W. T. Yu, H. Lei, Chem. Eur. J., 2003, 9, 5074. 35. O. Kwon, S. Barlow, S. A. Odom, L. Beverina, N. J. Thompson, E. Zojer, J. L. Bredas, S. R. Marder, J. Phys. Chem., A 2005, 109, 9346. 36. S. W. Cha, S. H. Joo, M. Y. Jeong and J. I. Jin, Synth. Met., 2005, 150, 309. 37. D. X. Cao, Q. Fang, D. Wang, Z. Q. Liu, G. Xue, G. B. Xu, W. T. Yo, Eur. J. Org. Chem., 2003, 3628. 38. Z. J. Hu, J. X. Yang, Y. P. Tian, X. T. Tao, L. Tian, H. P. Zhou, G. B. Xu, W. T. Yu, Y. X. Yan, Y. H. Sun, C. K. Wang, X. Q. Yu, M. H. Jiang, Bull. Chem. Soc. Jpn., 2007, 80, 986. 第四章 參考文獻 1. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913. 2. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1989, 65, 3610. 3. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1990, 57, 531. 4. D. Braun, A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982. 5. P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, R. H. Friend, R. W. Gymer, Nature, 1992, 356, 37. 6. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 1992, 357, 477. 7. Y. Cao, G. Yu, J. Heeger, Appl. Phys. Lett., 1996, 68, 3281. 8. K. Tamao, S. Kodama, I. Nakajima, M. Kumada, Tetrahedron, 1982, 38, 3347. 9. T. Yamamoto, Y. Hayasi, A. Yamamoto, Bull. Chem. Soc. Jpn., 1978, 51, 2091. 10. T. F. McCarthy, H. Witteler, T. Pakula, G. Wegner, Macromolecules, 1995, 28, 8350. 11. A. Iraqi, I. Wataru, Chem. Mater., 2004, 16, 442. 12. A. Iraqi, I. Wataru, J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 6041. 13. N. Blouin, M. Leclerc, Accounts Chem. Res., 2008, 41, 1110. 14. G. Zotti, G. Schiavon, S. Zecchin, J. F. Morin, M. Leclerc, Macromolecules, 2002, 35, 2122. 15. A. Iraqi, D. F. Pickup, H. Yi , Chem. Mater., 2006, 18, 1007. 16. J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett., 1995, 67, 2281. 17. F. J. Larmat, R. Reynolds, B. A. Reinhardt, L. L. Brott, S. J.Clarson, J. Polym. Sci. Part A: Polym. Chem., 1997, 35, 3627. 18. D. Neher, Macromol. Rapid Commun., 2001, 22, 1365. 19. X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger. Adv. Mater., 2002, 14, 581. 20. A. Babel, S. A. Jenekhe, Macromolecules, 2003, 36, 7759. 21 D. Moses, X. Gong, P. K. Iyer, G. C. Bazan, A. J. Heeger, S.S. Xiao, Adv. Funct. Mater., 2003, 13, 325. 22. J. Lu, Y. Tao, M. D’iorio, Y. Li, Macromolecules, 2004, 37, 2442. 23. Y. Li, J. Ding, M. Day, Y. Tao, J. Lu, Chem. Mater., 2004, 16, 2165. 24. W. Y. Wong, L. Liu, D. Cui, L. M. Leung, C. F. Kwong, Macromolecules, 2005, 38, 4970. 25. E. J. W. List, R. Guentner, P. S. de Freitas, U. Scherf, Adv. Mater., 2002, 14, 374. 26. M. Gaal, E. J. W. List, U. Scherf, Macromolecules, 2003, 36, 4236. 27. G. Klärner, J. I. Lee, M. H. Davey, R. D. Miller, Adv. Mater., 1999, 11, 115. 28. D. Marsitzky, J. Murray, J. C. Scott, K. R. Carter, Chem. Mater., 2001, 13, 4285. 29. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 2001, 123, 946. 30. C. F. Shu, R. Dodda, F. I. Wu, M. S. Liu, A. K. Y. Jen, Macromolecules, 2003, 36, 6698. 31. G. Klärner, J. I. Lee, V. Y. Lee, E. Chan, J. P. Chen, A. Nelson, D. Markiewicz, R.Siemens, J. C. Scott, R. D. Miller, Chem. Mater., 1999, 11, 1800. 32. S. Inaoka, R. Advincula, Macromolecules, 2002, 35, 2426. 33 R. Tamaki, Y. Tanaka, M. Z. Asuncion, J. Choi, R. M. Laine, J. Am. Chem. Soc., 2001, 123, 12416. 34. A. W. Graice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, E. P. Woo, Appl. Phys. Lett., 1998, 73, 629. 35. H. Yan, Q. L. Huang, J. Cui, J. G. C. Veinot, M. M. Kern, T. Marks, Adv. Mater., 2003, 15, 835. 36. Y. J. Pu, M. Soma, J. Kido, H. Nishide, Chem. Mater., 2001, 13, 3817. 37. C. Xia, R. C. Advincula, Macromolecules, 2001, 34, 5854. 38. T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Muller, K. Meerholz, A. Yasuda, D. Neher, Adv. Mater., 2001, 13, 565. 39. B. Liu, W. L. Yu, Y. H. Lai, W. Huang, Chem. Mater., 2001, 16, 1984. 40. K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. W. Ko, J. Am. Chem. Soc., 2001, 123, 9404. 41. S. P. Lui, H. S. O. Chan, S. C. Ng, J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 4792. 42. P. Herguth, X. Jiang, M. S. Liu, A. K. Y. Jen, Macromolecules, 2002, 35, 6094. 43. A. Tsami, X. H. Yang, F. Galbrecht, T. Farrell, H. Li, S. Adamczyk, R. Heiderhoff, L. J. Balk, D. Neher, E. Holder, J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 4773. 44. M. Mazzeo, V. Vitale, F. D. Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani, G. Gigli, Adv. Mater., 2005, 17, 34. 45. T. Noda, H. Ogawa, Y. Shirota, Adv. Mater., 1999, 11, 283. 46. W. L. Jia, D. R. Bai, T. McCormick, Q. D. Liu, M. Motala, R. Y. Wang, C. Seward, Y. Tao, S. Wang, Chem. Eur. J., 2004, 10, 994. 47. W. L. Jia, M. J. Moran, Y. Y. Yuan, Z. H. Lu, S. Wang, J. Mater. Chem., 2005, 15, 3326. 48. Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto, T. Ohara, J. Am. Chem. Soc., 2000, 122, 11021. 49. H. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, Chem. Mater., 2003, 15, 1080. 45. C. D. Entwistle, T. B. Marder, Chem. Mater., 2004, 16, 4574. 50. A. Wakamiya, T. Taniguchi, S. Yamaguchi, Angew. Chem. Int. Ed., 2006, 45, 3170. 51. T. Noda, Y. Shirota, J. Am. Chem. Soc., 1998, 120, 9714. 52. N. Matsumi, K. Naka, Y. Chujo, J. Am. Chem. Soc.,1998, 120, 5112. 53. C. H. Zhao, A. Wakamiya, S. Yamaguchi, Macromolecules, 2007, 40, 3898. 54. D. Reitzenstein, C. Lambert, Macromolecules, 2009, 42, 773. 55. Z. Liu, J. Chen, L. Huang, J. Peng, Y. Cao, Polymer, 2008, 49, 1604. 56. J. A. Mikroyannidis, K. M. Gibbons, A. P. Kulkarni, Macromolecules, 2008, 41,663. 57. N. P. H. Nam, S. W. Cha, B. S. Kim, S. H. Choi, D. S. Choi, J. I. Jin, Synth. Met., 2002, 130, 271. 58. L. L. Miller, G. D. Nordblom, E. A. Mayeda, J. Org. Chem., 1972, 37, 916. 59. C. J. Yang, S. A. Jenekhe, Macromolecules, 1995, 28, 1180.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3892-
dc.description.abstract本研究區分為三部份,包含針對新型高熱穩性之吡咯衍生物、含二(三甲苯基)硼咔唑衍生物、與侧鏈含二(三甲苯基)硼發光基團共軛高分子之合成及其應用於藍光發光元件做相關討論。 在第一部份,我們成功合成一系列不同芳香取代基之吡咯衍生物,由光物理及熱性質得知,吡咯分子周圍之芳香取代基可調控此系列分子之放光波長,並誘導此系列分子產生非結晶之型態。於溶劑下,此系列吡咯衍生物之螢光呈現出紫光~藍光。另外剛硬性之芳香取代,在固體狀態下可有效抑制發光分子間的堆疊效應,達到提升螢光效率及形成穩定的藍光光色的目的。取其中N,N''-(4,4''-(1-ethyl-2,5-di(naphthalen-2-yl) -1H-pyrrole-3,4-diyl)bis(4,1-phenylene))bis(N-phenylnaphthalen-1-amine)(NPANPy)製成元件進行電激發光性質研究,其中當以NPANPy為電洞傳遞層兼發光層時,可以得到亮度為4300~ 5000 cd/m2,色度座標為(0.16, 0.14)之藍光元件;此外,NPANPy為電洞傳遞層時,其元件效率甚至優於表準元件,故可發現NPANPy亦是非常好的電洞傳遞材料。 第二部份,採用市售化(縮短合成步驟)且具吡咯結構之稠環化合物-咔唑(carbazole)為核心單體,並與雙(三甲苯基)硼反應合成四種共軛橋接官能基(苯環、雙苯環、二苯乙烯、苯環噻吩)之雙(三甲苯基)硼咔唑衍生物。從光物理及熱性質得知,經由不同共軛橋接官能基達到修飾此系列分子之放光波長範圍,此系列雙(三甲苯基)硼咔唑衍生物在薄膜態和溶液之螢光皆為藍光放光;而非平面性之雙(三甲苯基)硼官能基可減少分子間堆疊特性,故此系列分子產生非結晶之型態。當以橋接官能基(二苯乙烯、苯環噻吩)之衍生物製成三層發光元件時,其元間之最大亮度分別為3894及4763 cd/m2,最大發光效率皆為0.72 cd/A,色座摽值分別為(0.15, 0.13)和(0.15, 0.09),故此兩種螢光材料具應用潛力之深藍光材料。 雖然第二部分研究之發光材料具有不錯的光物理性質,而為提升其熱性質,故於第三部份時,採用將小分子聚合成高分子之方式,達到提升發光材料之熱性質。此部分我們選擇橋接官能基為苯環及苯環噻吩之雙(三甲苯基)硼咔唑衍生物(Cz9PhB和Cz9PhThB)為反應單體,並與茀分子聚合出主鏈含不同咔唑/茀比例之兩系列共軛高分子(CzPhB/fluorene和CzPhThB/fluorene系列)。此兩系列高分子在室溫下具不錯溶解度及較佳之熱穩定性,而薄膜態和溶液之放光波長皆在藍光範圍內,於液態下的量子效率也優於純聚芴高分子。本研究兩系列高分子之發光元件不論是在發光亮度或是效率皆勝於純聚芴高分子之元件,其中CzPhThB/fluorene系列之元件表現較CzPhB/fluorene系列佳。兩系列高分子之元件啟動電壓為4.5~8.5 V, 並以PFCzPhThB10 有最大發光亮度436 cd/m2, 而發光效率則為 0.51 cd/A。zh_TW
dc.description.abstractIn the first part, a series of aryl-substituted pyrrole analogues were synthesized. These pyrrole analogues emitted violet to blue light. Fluorescence and amorphous glassy properties of these pyrrole analogues were induced by manipulating the peripheral aryl groups. These crowded peripheral aryl groups would effectively prevent the fluorophores from aggregation, resulting in higher quantum efficiency and a stable emission spectrum in the solid state. One of the aryl-substituted pyrrole analogues, namely NPANPy can be used as hole-transporting material or hole- transporting/emitting material. The devices would emit blue light when the fluorophore NPANPy acts as the hole-transport-ing/emitting material. Their CIE coordinate is around (0.16, 0.14), and the maximum brightness reached 4300-5000 cd/m2. Apart from that, when the fluorophore was used only as the hole-transporting material, better device performances, were found, as compared with the standard device. In the second part, we report on the synthesis and the molecular properties of novel N-arylated (phenyl, biphenyl, stilbene, phenyl-thiophene) carbazole derivatives bearing dimesitylborane (Cz9PhB, Cz9Ph2B, Cz9SB, Cz9PhThB) for blue light-emitting diodes were reported. These four emitters emit blue light in solution and as thin films. Photo-physic and thermal properties of these blue emitters were induced by manipulating the conjugated length of the N-arylation groups, and the non-planarity of dimesitylborane moiety would effectively preclude the fluorophores from aggregation, resulting in amorphous glassy properties. Three-layer organic light-emitting devices (OLEDs) based on Cz9SB and Cz9PhThB as emitting materials exhibited a maximum brightness of 3894 and 4763 cd/m2, respectively. Both devices gives the maximum current efficiency of 0.72 cd/A, and with a blue CIE coordinates of (0.15, 0.13) and (0.15, 0.09) for Cz9SB and Cz9PhThB, respectively. In the final part, two series of random and alternating carbazole/fluorene copolymers with various dimesitylboron-containing carbazole derivative contents were synthesized for blue light-emitting diodes. Two carbazole derivatives, CzPhB and CzPhThB consisted of a carbazoyl group as the donor and a dimesitylboron group as the acceptor group, separated by phenyl and phenyl-thiophene groupsen_US
dc.description.tableofcontents誌謝.....................................................i 摘要....................................................ii Abstract................................................iv 目錄....................................................vi 圖目錄................................................viii 表目錄..................................................xi 附錄...................................................xii 第一章 緒論.............................................1 1.1 前言 ................................................1 1.2 有機發光二極體發展歷史...............................1 1.3 有機發光二極體的發光原理.............................2 1.4 有機發光二極體元件基本結構...........................5 1.5 OLED和PLED之比較....................................6 1.6 有機發光二極體之全彩化技術...........................7 1.7 參考文獻 ............................................9 第二章 含芳香取代基吡咯衍生物之藍光小分子材料...........10 2.1 序論................................................10 2.2 文獻回顧與研究動機..................................12 2.2.1 增進材料之薄膜形態穩定性..........................12 2.2.2利用分子結構設計改善光色及分子螢光效率問題.........15 2.2.3研究動機...........................................19 2.3 實驗內容............................................20 2.3.1 實驗藥品..........................................20 2.3.2 實驗溶劑..........................................21 2.3.3 儀器(第二、三、四章)..............................22 2.3.4 含芳香取代基吡咯衍生物之合成......................25 2.4 結果與討論..........................................37 2.4.1含芳香取代基吡咯衍生物之熱性質分析.................37 2.4.2含芳香取代基吡咯衍生物之光學性質分析...............40 2.4.3含芳香取代基吡咯衍生物之電化學性質分析.............43 2.4.4含芳香取代基吡咯衍生物之元件特性分析...............45 2.5 含芳香取代基吡咯衍生物之研究結論....................53 2.6 參考文獻............................................54 第三章..................................................57 含雙(三甲苯基)硼咔唑衍生物之藍光小分子材料..............57 3.1 序論................................................57 3.2 文獻回顧與研究動機..................................58 3.2.1 高效率藍光材料之介紹..............................58 3.2.2 含芳香基硼(arylborane)材料之介紹..................60 3.2.3 咔唑9號位置含拉電子官能基材料之介紹...............62 3.2.4 研究動機..........................................63 3.3 實驗內容............................................64 3.3.1 實驗藥品..........................................64 3.3.2實驗溶劑...........................................65 3.3.3 含雙(三甲苯基)硼咔唑衍生物之合成..................66 3.4 結果與討論..........................................73 3.4.1含雙(三甲苯基)硼咔唑衍生物之熱性質分析.............73 3.4.2含雙(三甲苯基)硼咔唑衍生物之光學性質分析...........76 3.4.3含雙(三甲苯基)硼咔唑衍生物之電化學性質分析.........80 3.4.4含雙(三甲苯基)硼咔唑衍生物之元件特性分析...........82 3.5 含雙(三甲苯基)硼咔唑衍生物之研究結論................88 3.6 參考文獻............................................89 第四章..................................................91 侧鏈含雙三甲苯硼基團之藍光高分子材料....................91 4.1 序論................................................91 4.2 文獻回顧與研究動機..................................92 4.2.1含聚芴高分子(Polyfluorene, PF)材料之介紹...........92 4.2.2含三芳基硼(triarylborane)材料之介紹................95 4.2.3研究動機...........................................97 4.3 實驗內容............................................98 4.3.1 實驗藥品..........................................98 4.3.2實驗溶劑...........................................99 4.3.3 合成部份.........................................100 4.4 結果與討論.........................................105 4.4.1 PFCzPhB及PFCzPhThB系列之溶解度測試...............105 4.4.2 PFCzPhB及PFCzPhThB系列之分子量及熱性質分析.......105 4.4.3 PFCzPhB及PFCzPhThB系列之光學性質分析.............109 4.4.4 PFCzPhB及PFCzPhThB系列之電化學性質分析...........114 4.4.5 PFCzPhB及PFCzPhThB系列之元件特性分析.............116 4.5 結論...............................................121 4.6 參考文獻...........................................122 第五章 總 結...........................................125 附錄-個人著作..........................................127zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201114211000en_US
dc.subjectBlueen_US
dc.subject電激發光zh_TW
dc.subjectOLEDen_US
dc.subjectpyrroleen_US
dc.subjectcarbazoleen_US
dc.subject吡咯zh_TW
dc.subject咔唑zh_TW
dc.title含吡咯及咔唑衍生物之藍光有機電激發光材料之合成與電激發光特性研究zh_TW
dc.titleSynthesis and Characterization of Novel Organic Light-Emitting Diodes Based on Pyrrole and Carbazole Derivativesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.