Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3894
標題: 合成鉑銠金屬粒子擔持在石墨烯電極觸媒對甲醇氧化之研究
Synthesis of the Pt and Rh nanoparticles on graphene for methanol oxidation
作者: 許壹忠
HSU, YI-JUNG
關鍵字: Graphene;石墨烯;methanol oxide;electrochemical;nanoparticle;甲醇氧化;電化學;奈米金屬粒子
出版社: 化學工程學系所
引用: 1.Fuel Cell Handbook(Seventh Edition),November 2004. 2.鄭耀宗、徐耀昇,燃料電池技術進展的現況分析,八十八年節約能源論文發表會論文專輯,第409-422 頁,1999. 3.Hamnett A, Catal. Today, 38 (1997) 445. 4.N.M. Markovic et al, Surf. Sci. Rep45 (2002) 117. 5.M. Gotz, H. Wendt, Electrochim. Acta43 (1998)3637. 6.M.M.P. Janssen, J. Moolhuysen, Electrochim. Acta 21 (1976) 861. 7.Alechia Crown, Ines R. Moraes, Andrzej Wieckowski. J. Electroanal. Chem.500(2001)333-343. 8.A. S. Arico, Z. Poltazewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, J. Power Sources 55 (1995)159. 9.B,N.Grgur, N.M.Markovic and P. N. Ross, Electrochim.Acta 43 (1998)3631-3635. 10.B.C. Beard, P.N. Ross, J. Electrochem. Soc. 137 (1990) 3368. 11.Hui Yang , Christophe Coutanceau , Jean-Michel Le’ger , Nicolas Alonso-Vante ,Claude Lamy, J. Electroanal. Chem.576 (2005) 305–313 . 12.B.C. Beard, P.N. Ross, J. Electrochem. Soc. 133 (1986) 1839. 13.S. Mukerjee, S. Srinivasan, M.P. Soriaga, J. McBreen, J.Electrochem. Soc. 142 (1995)1409. 14.G. Cambanis, D. Chadwick, Appl. Catal. 25 (1986)191. 15.J.Choi,K.Park,In-SuPark, W.Nam, Yung-Eun Sung Electrochim.Acta 50 (2004) 787–790. 16.M. Watanabe, S. Motoo, J. Electroanal. Chem. 60 (1975) 267–273. 17.D.A.J. Rand and R. Woods, J. Electroanal. Chem. 36 (1972) 57. 18.M.P. Zum Mallen and L.D. Schmidt, J. Catal. 161 (1996) 230. 19.C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra, M. Pasquali, J. Power Sources 183 (2008) 84. 20.N. Tsiouvaras, M.V. Martínez-Huerta, R. Moliner, M.J. Lázaro, J.L. Rodríguez, E. Pastor, M.A. Pe˜na, J.L.G. Fierro, J. Power Sources 186 (2009) 299-304. 21.J.L. Gómez de la Fuente, M.V. Martínez-Huerta, S. Rojas, P. Terreros, J.L.G. Fierro, M.A. Pe˜na, Catal. Today 116 (2006) 422. 22.J. Wu, F.P. Hu, X.D. Hu, Z.D. Wei, P.K. Shen, Electrochim. Acta 53 (2008) 8341. 23.A. K. Geim and K. S. Novoselov. Nature, 354(1991)56—58. 24.PISANA S, LAZZERI M, CASIRAGHIC, et al. Nat .Mater, 6(2007)198-201. 25.GEIM A K, NOVOSELOV K S. Nat .Mater,6 (3)(2007)83-191 26.GHOSH S,CALIZO I,TEWELDEBRHAND, et al. Appl . Phys Lett, 92(2008) 151911. 27.LIU F,MING P B. Ab initio calculation of ideal strength and phonon instability of grapheme in tension [J].J Phys Rev B,76(2007)064120 28.LEE C G, WEI X D, KYSAR J W, et al. Science, 321(2008) 385-388. 29.E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008)2277-2282. 30.S.R.C.Vivekchand C.S.Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J.Chem. Sci. 120 (2008) 9-13. 31.X. Wang, L. Zhi, K. Mullen, Nano Lett. 8 (2007) 323-327. 32.E.J. Yoo, T. Okada, T. Kizuka, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 9 (2009) 2255–2259. 33.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306 (2004)666-669. 34.Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl Phys .Lett, 86(2005) 073104. 35.W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, Solid State Communications, 143(2007) 92-100 . 36.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J.Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science, 312(2006)1191-1196. 37.W. Hummers and R. Offeman, Preparation of graphitic oxide, J Am Chem Soc 80 (1958) 1339. 38.C. Xu, X. Wu, J. Zhu, and X. Wang, Carbon, 46(2008) 386-389. 39.V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat Nano, 4(2009) 25-29 40.C. Nethravathi and M. Rajamathi, Carbon 46 (2008)1994-1998. 41.Y. Si and E.T. Samulski., Nano Lett. 8 (2008)1679. 42.G. Wang, J. Yang, J. Park, X. Gou, B. Wang and H. Liu., J. Phys. Chem. 112 (2008)8192-8195. 43.A. L. L. B. W. M. Hess, Proc. 6th Int. Congr. on Electron Microscopy (Kyoto)1(1966)569. 44.A. E. Karu and M. Beer, J. Appl Phy, 37(1966) 2179-2181. 45.M. Watanabe et al., J.Electroanal. Chem 229 (1987)395. 46.T.J. Schmidt et al., Langmuir 13 (1997) 2591. 47.Y. Shiraishi, N. Toshima, J. Mol. Catal. A 141 (1999) 187. 48.D.K.Gosser ,VCH New York ,1993. 49.Tran TD, Langer SH. Analytical Chemistry 65(13)(1993)1805-1807. 50.柯以侃,吳明珠,儀器分析(熱分析法),文京圖書有限公司,1999. 51.許樹恩、吳泰伯,X光繞射原理與材料結構分析 ,中國材料科學學會,1993. 52.陳力俊等,材料電子顯微鏡學,科儀叢書,1994. 53.陳家全,李家維,楊瑞森,生物電子顯微鏡學,貴儀中心,1991. 54.Yan Geng, Shu Jun Wang and Jang-Kyo Kim J.Colloid and Inter. Sci.336(2009)592-598.
摘要: 
全球正面臨著能源短缺及環境變遷的危機,各國均在尋求研發能替代石油的能源方案。如氫能源及燃料電池等一些較環保又安全的新興替代能源。甲醇燃料電池被視為替代能源的方案之一,主要因其有高能量轉換效能、低汙染的條件。但甲醇燃料電池本身在反應的過程中會產生一氧化碳,使得其造成甲醇燃料電池陽極觸媒上的白金產生毒化的現象,進而影響甲醇燃料電池的效能。過去使用在燃料電池上的觸媒大部分都是使用高孔隙度的材料來當作載體,像早期的碳黑和奈米碳管當做載體,這些材料有著良好的導電性、高的比表面積。近幾年來在此議題的研究顯示,石墨烯有著獨特的結構、機械、物理與化學性質,並可以提供較多的反應面積,有做為電極材料之潛力。
本研究目的在於提供一個性質優越的載體,利用鉑、銠金屬在石墨的分散度來合成性質優越的陽極電極觸媒材料,因此選用了石墨烯當做陽極的觸媒材料。首先一開始為製備石墨烯實驗是利用Hummers method 來製備氧化石墨烯,在金屬粒子的覆載使用氯鉑酸當作前驅物,以乙二醇還原法使鉑粒子均勻的分散在石墨烯上,而且能夠把氧化石墨烯還原成石墨烯,再利用不同的金屬濃度來檢測甲醇燃料電池毒化的效果,並利用不同的溫度製備鉑-石墨烯觸媒以找出粒子能夠吸附在石墨烯載體上的最佳還原溫度。最後利用銠來當作第二金屬輔助觸媒。以XRD鑑定材料晶相,TEM觀察金屬粒徑與分散情況並由其氧化還原電流比來探討觸媒對一氧化碳的抗毒性且探討不同的鉑、銠含量比、粒徑大小與分散度等條件來研究對直接甲醇燃料電池觸媒的效率的影響。

Global is facing energy and environmental crisis,many countries in the world are bound to develop alternative energy to displace petroleum fuels. Alternative energies can be more safe and clean to the environments such as hydrogen energy and fuel cell. The methanol fuel cell has been one of the alternative energy projects to due to its high energy conversion ratio and low pollution. But methanol fuel cell produces carbon monoxide during reaction process and deactivate the platinum catalyst in the methanol fuel cell. In the past few years, most of the catalysts with high porosity properties has been used in the methanol fuel cell. such as carbon block and carbon nanotubes. These carbonaceous materials have good electrical conductivity and high surface area. In recent years, many studies show that graphene have unigue structure, mechanical, physical and chemical properties. These excellent properties provide more active surface sites for a specific reaction.
The purpose of this study is to prepare a good support that to anchor platinum metal using as anode electrocatalyst material. The anode material will use graphene. First prepare graphene material. The Hummers method will be applied to make graphite oxide as a metallic precursor using dihydrogen hexachloroplatinate hexahydrate as the metallic precursor. To evaluate the performance of the methanol fuel cell with the function of metal concentration and to find the optimum reduction temperature for metal to disperse on graphene. Finally, rhodium can be used as second metallic to assistant catalyst. The metallic crystal phase can be determined by XRD, and particle size and dispersion of the metal can be observed by TEM. The catalyst has the tolenace toward CO resistance by changing redox current ratio and reaches the methanol fuel cell efficient can be determined by controlling Pt/Rh ratio particle size and dispersion.
URI: http://hdl.handle.net/11455/3894
其他識別: U0005-1507201114465000
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.