Please use this identifier to cite or link to this item:
標題: 皮膚修復之奈米複合生醫材料
Study of Nanobiomaterials for Skin Repair
作者: 曾向榮
Tseng, Hsiang-Jung
關鍵字: 抑菌;bacteriostasis;生物相容性;奈米複合材料;銀奈米粒子;聚胺酯(PU);蒙脫土;矽片;幾丁聚醣;明膠;支架;真皮層;生物膠;人工皮膚.;biocompatibility;nanocomposites;silver nanoparticles (nano-Ag);polyurethane (PU);montmorillonite;silicate platelet;zeta potentials;chitosan;gelatin;scaffold;dermis;bioglue;artificial skin
出版社: 化學工程學系所
引用: Chapter 1 [1] [1] Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010;7:229-258. [2] Medtech I. Tissue Engineering and Cell Transplantation: U.S. Markets for Skin Replacements and Substitutes. Global Information Inc 2011;January 6. [3] Shier D, Butler J, Lewis R. Hole's Human Anatomy and Physiology 8th Edn. McGraw Hill 1999; p160-183. [4] Janetta B, Philippa B. Aromadermatology: aromatherapy in the treatment and care of common skin conditions. Radcliffe Publishing Ltd 2006; p1-11. [5] Hendriks FM, Brokken D, Oomens CWJ, Baaijens FPT, Morales-Serrano FJ. Characterization of mechanical properties of human dermis in vivo. Philips Res. Lab., Eindhoven. Technische Universiteit Eindhoven. [6] Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 2000;26:379-387. [7] Compton CC. Current concepts in pediatric burn care: the biology of cultured epithelial autografts: an eight-year study in pediatric burn patients. Eur J Pediatr Surg 1992;2:216-222. [8] Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1986;1:1123-1124. [9] Gallico III GG, O'Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984;311:448-451. [10] Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 1999;68:868-879. [11] Sheridan RL, Tompkins RG. Recent clinical experience with cultured autologous epithelium. Br J Plast Surg 1996;49:72-74. [12] Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma 1995;39:309-319. [13] Munster AM. Cultured skin for massive burns. A prospective, controlled trial. Ann Surg 1996;224:372-375. [14] Phillips TJ, Gilchrest BA. Clinical applications of cultured epithelium. Epithelial Cell Biol 1992;1:39-46. [15] Gallico III GG. Biologic skin substitutes. Clin Plast Surg 1990;17:519-526. [16] Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331-343. [17] Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 1977;265:421-424. [18] Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl Acad. Sci. USA 1979;76:5665-5668. [19] O'Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet I.1981;75-78. [20] Gallico GG, O'Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. New Engl J. Med. 1984;311:448-451. [21] Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet i. 1986;1123-1124. [22] Ramos-e-Silva M, Ribeiro de Castro MC. Clin. Dermatol. 2002;20:715-723. [23] Burke JF, Yannas I, Quinby C, Bondoc C, Jung WK. Ann. Surg. 1981;194:413-428. [24] Yannas IV, Burke JF, Warpehoski M, Stasikelis P, Skrabut EM, Orgill D, Giard DJ. Trans. Am. Soc. Artif. Intern. Organs 1981;27:19-23. [25] Yannas I, Burke J, Orgill D, Skrabut E. Science. 1982;215:174-176. [26] Yannas I, Lee E, Orgill D, Skrabut E, Murphy G. Proc. Natl. Acad. Sci. U.S.A. 1989;86:933-937. [27] Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin. Dermatol. 2005;23:403-412. [28] Sher SE, Hull BE, Rosen S, Church D, Friedman L, Bell E. Acceptance of allogeneic fibroblasts in skin equivalent transplants. Transplantation. 1983;36:552-557. [29] Bell E, Sher S, Hull B. The living skin-equivalent as a structural and immunological model in skin grafting. Scan. Electron Microsc. 1984;1957-1962. [30] Eaglstein WH. Acute excisional wounds treated with a tissue-engineered skin (Apligraf). Dermatol. Surg. 1999;25:195-201. [31] Hebda PA, Dohar JE. Transplanted fetal fibroblasts: survival and distribution over time in normal adult dermis compared with autogenic, allogenic, and xenogenic adult fibroblasts. Otolaryngol. Head Neck Surg 1999;121:245-251. [32] Sandulache VC, Zhou Z, Sherman A, Dohar JE, Hebda PA. Impact of transplanted fibroblasts on rabbit skin wounds. Arch. Otolaryngol. Head Neck Surg 2003;129:345-350. [33] Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissue Eng 2004;10:1180-1195. [34] Eaglstein WH, Falanga V. Tissue engineering for skin: an update. J. Am. Acad. Dermatol 1998;39:1007-1010. [35] Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng 2006;12:2407-2424. Chapter 2 [1] [1] Lamba N, Woodhouse K, Cooper SL. Polyurethanes in biomedical applications. New York: CRC press, Boca Raton BL; 1998. [2] Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 2005;65:1703-1710. [3] Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 2005;90:59-63. [4] Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;25:4383-4391. [5] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bateria. J Colloid Interface Sci 2004;275:177-182. [6] Yen HJ, Hsu S, Tsai CL. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009;5:1553-1561. [7] Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y. Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 2005;59:3046-3049. [8] Hung HS, Hsu S. Biological performances of poly(ether)urethane-silver nanocomposites. Nanotechnology 2007;18:475101. [9] Chou CW, Hsu S, Wang PH. Biostability and biocompatibility of poly(ether)urethane containing gold or siliver nanoparticles in porcine model. J Biomed Mater Res Part A 2008;84:785-794. [10] Hsu S, Tang CM, Tseng HJ. Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 2008;9:241-248. [11] Hsu S, Chou CW, Tseng SM. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng 2004;289:1096-1101. [12] Li C, Goodman SL, Albrecht RM, Cooper SL. Morphology of segmented polybutadiene-polyurethane elastomers. Macromolecules 1988;21:2367-2375. [13] Schubert M, Wiggins M, Anderson J, Hiltner A. Comparison of two antioxidants for poly(etherurethane urea) in an accelerated in vitro biodegradation system. J Biomed. Mater Res 1997;34:493-505. [14] Hsu S, Lin ZC. Biocompatibility and biostability of a series of poly(carbonate)urethanes. Colloids Surf B 2004;36:1-12. [15] Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol 1995;28:25-30. [16] Hsu S, Kao YC, Lin ZC. Enhanced biocompatibility in biostable poly(carbonate)urethane. Macromol Biosci 2004;4:464-470. [17] Naim J, Oss C, Ippolito K, Zhang J, Jin L, Fortuna R, et al. In vitro activation of human monocytes by silicones. Colloids Surf B 1998;11:79-86. [18] Hsu S, Chou CW. Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degrad Stab 2004;85:675-680. [19] Gupta A, M Maynes, Silver S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 1998;64:5042-5045. [20] Gupta A, Phung LT, Taylor DE, Silver S. Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 2001;147:3393-3402. [21] Hsu S, Tang CM, Tseng HJ. Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res Part A 2006;79:759-770. [22] Ndung'u K, Ranville MA, Franks RP, Flegal AR. On-line determination of silver in natural waters by inductively-coupled plasma mass spectrometry: Influence of organic matter. Mar Chem 2006;98:109-120. [23] Klement P, Du YJ, Berry LR, Tressel P, Chan AKC. Chronic performance of polyurethane catheters covalently coated with ATH complex: a rabbit jugular vein model. Biomaterials 2006;27:5107-5117. [24] Chou CW, Hsu S, Chang H, Tseng SM, Lin HR. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polym Degrad Stab 2006;91:1017-1024. [25] Hsu S, Tang CM, Tseng HJ. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites. Acta Biomater 2008;4:1797-1808. [26] Xu XHN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 2004;43:10400-10413. [27] Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta Biomater 2005;51:956-960. [28] Davies RL, Etris SF. The development and functions of silver in water purification and disease control. Catal Today 1997;36:107-114. [29] Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3:95-101. [30] Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnologty 2007;18:225103. [31] Expinosa-Cristóbal LF, Martínez-Castañón GA, Martínez-Martínez RE, Loyola-Rodríguez JP, Patiño-Marín N, Reyes-Macías JF. Antibacterial effect of silver nanoparticles against streptococcus mutans. Mater Lett 2009;63:2603-2606. [32] Klueh U, Wangner V, Kelly S, Johnson A, Bryers JD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed. Mater Res 2000;53:621-631. Chapter 3 [1] [1] Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 2006;12:301-347. [2] Liebmann-Vinson A, Timmins M. Biodegradable polymers: degradation mechanisms Part 2. PBM Series vol 2; 2003. Chapter 10. [3] Gorna K, Gogolewski S. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res 2002;60:592-606. [4] Hiltunen K, Tuominen J, Seppala JV. Hydrolysis of lactic acid based poly(ester-urethane)s. Polym Int 1998;47:186-192. [5] Tang YW, Labow RS, Santerre JP. Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration. J Biomed Mater Res 2001;56:516-528. [6] Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB, Sacks MS, Keller BB, Wagner WR. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007;49:2292-2300. [7] Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 2007;83:648-654. [8] Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res A 2007;80:94-101. [9] Gogolewski S, Gorna K, Turner AS. Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes. J Biomed Mater Res A 2006;77:802-810. [10] Liljensten E, Gisselfaelt K, Edberg B, Bertilsson H, Flodin P, Nilsson A. Studies of polyurethane urea bands for ACL reconstruction J Mater Sci Mater Med 2002;13:351-359. [11] Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005;26:7457-7470. [12] Gorna K, Gogolewski S. In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics® with various hydrophilicities. Polym Deg Stab 2002;75:113-122. [13] Bernard AD. Polyurethane. New York: Reinhold Publishing Corporation; 1965. 9 p. [14] Ishiyama M, Matuura T, Mihoya T, Fujimatsu S, Utsugi M, Iibuchi K. Aqueous dispersion of an aqueous hydrazine-terminated polyurethane. U.S. Patent 1997;5700867. [15] Chou CC, Lin JJ. One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. Macromolecules 2005;38:230-233. [16] Lin JJ, Chu CC, Chiang ML, Tsai WC. First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. J Phys Chem B 2006;110:18115-18120. [17] Chiu CW, Chu CC, Cheng WT, Lin JJ. Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. Eur Polym J 2008;44:628-636. [18] Lin JJ, Chen YM. Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates. Langmuir 2004;20:4261-4264. [19] Lin JJ, Chu CC, Chiang ML, Tsai WC. Manipulating Assemblies of High-Aspect-Ratio Clays and Fatty Amine Salts to Form Surfaces Exhibiting a Lotus Effect. Adv Mater 2006;18:3248-3252. [20] Chiu CW, Chu CC, Dai SA, Lin JJ. Self-Piling Silicate Rods and Dendrites from High Aspect-Ratio Clay Platelets. J Phys Chem C 2008;112:17940-17944. [21] Wang MC, Yen HJ, Tseng HJ, Hsu S, Lin JJ. Biocompatibility of novel nanocomposites from chitosan and nano silicate platelets. Gent, Belgium: The 7th international symposium on frontiers in biomedical polymers; 2007. 120 p. [22] Chou CC, Shieu FS, Lin JJ. Preparation, Organophilicity, and Self-Assembly of Poly(oxypropylene)amine−Clay Hybrids. Macromolecules 2003;36:2187-2189. [23] David DJ, Staley HB. Analytical chemistry of the polyurethane. New York: Wiley; 1969. 357 p. [24] Hsu S, Chou CW, Tseng SM. Enhanced Thermal and Mechanical Properties in Polyurethane/Au Nanocomposites. Macromol Mater Eng 2004;289:1096-1101. [25] Hagiwaro H, Shimonaka M, Morisakj M, Ikekawa N, Inada Y. Sitosterol-stimulative production of plasminogen activator in cultured endothelial cells from bovine carotid artery. Thromb Res 1984;33:363-370. [26] Hsu S, Tang CM, Tseng HJ. Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A 2006;79:759-770. [27] Hsu S, Tang CM, Tseng HJ. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites. Acta Biomater 2008;4:1797-1808. [28] Christenson EM, Patel S, Anderson JM, Hiltner A. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials 2006;27:3920-3926. [29] Pattanayak A, Jana SC. Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer 2005;46:5183-5193. [30] Choi WJ, Kim SH, Kim YJ, Kim SC. Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer 2004;45:6045-6057. [31] Dan CH, Lee MH, Kim YD, Min BH, Kim JH. Effect of clay modifiers on the morphology and physical properties of thermoplastic polyurethane/clay nanocomposites. Polymer 2006;47:6718-6730. [32] Seyfriedsberger G, Rametsteiner K, Kern W. Polyethylene compounds with antimicrobial surface properties. Eur Polym J 2006;42:3383-3389. [33] Hsu S, Tseng HJ, Hung HS, Wang MC, Hung CH, Li PR, Lin JJ. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. ACS Appl Mater Interfaces 2009;1:2556-2564. [34] Fong N, Simmons A, Poole-Warren LA. Antibacterial polyurethane nanocomposites using chlorhexidine diacetate as an organic modifier. Acta Biomater 2010;6:2554-2561. [35] Kurt P, Wood L, Ohman DE, Wynne KJ. Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 2007;23:4719-4723. [36] Hsu S, Chou CW. Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degrad Stabil 2004;85:675-680. [37] Hsu S, Tseng HJ, Lin YC. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010;31:6796-6808. [38] Christenson EM, Dadsetan M, Wiggins M, Anderson JM, Hiltner A. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. J Biomed Mater Res A 2004;69:407-416. Chapter 4 [1] [1] Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003;24:4833-4841. [2] Auger FA, Berthod A, Moulin V, Pouliot R, Germain L. Tissue-engineered skin substitutes: from in vitro constructs to in vivo applications. Biotechnol Appl Biochem 2004;39:263-275. [3] Fini A, Orienti I. The role of chitosan in drug delivery. Am J Drug Deliv 2003;1:43-59. [4] Cho YW, Cho YN, Chung SH, Yoo G, Ko SW. Water-soluble chitin as a wound healing accelerator. Biomaterials 1999;20:2139-2145. [5] Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human fetal dermal fibroblasts. Biomaterials 2001;22:331-336. [6] Kuijpers AJ, Ergbers GHM, Feijen J, De Smedt SC, Meyvis TKL, Demeester J, Krijgsveld J, Zaat SAJ, Dankert J. Characterization of network structure of carbodiimide cross-linked gelatin gels. Macromolecular 1999;32:3225-3333. [7] Yao KD, Zhao F, Li F. ‘CS-based gels. In: Mel Schwartz' in Encyclopedia of smart materials, vol. 1, Wiley, New York, USA, 2002; 182-190. [8] Rose PJ, Mark HF, Bikales NM. Encyclopedia of polymer science and engineering, vol. 7. Wiley, New York USA, 1989; 488-513. [9] Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 2005;26:7616-7627. [10] Shen F, Cui YL, Yang LF. A study on the fabrication of porous chitosan-gelatin network scaffold for tissue engineering. Polym Inter 2000;49:1596-1599. [11] Whu SW, Hsu S, Tsai CL. Evaluation of Human Bone Marrow Mesenchymal Stem Cells Seeded into Composite Scaffolds and Cultured in a Dynamic Culture System for Neocartilage Regeneration in vitro. J Med Bio Eng 2009;29:52-58. [12] Yin YJ, Yao KD, Cheng GX. Properties of polyelectrolyte complex films of chitosan and gelatin. Polym Inter 1999;48:420-432. [13] Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997;18:95-105. [14] Osborne CS, Reid WH, Grant MH. Investigation into the biological stability of collagen/chondroitin-6-sulphate gels and their contraction by fibroblasts and keratinocytes: the effect of crosslinking agents and diamines. Biomaterials 1999;20:283-290. [15] Simionescu DT, Lovekamp JJ, Vyavahare NR. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves. J Biomed Mater Res A 2003;66:755-763. [16] Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996;17:765-773. [17] Ghavamzadeh R, Haddadi-Asl V, Mirzadeh H. Bioadhesion and biocompatibility evaluations of gelatin and polyacrylic acid as a crosslinked hydrogel in vitro. J Biomater Sci Polym Ed 2004;15:1019-1031. [18] Yu X, Cheng M, Chen H. Methods for the pre-treatment of biological tissues for vascular scaffold. J Biomed Eng 2004;21:476-481. [19] Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mater Res 1999;47:116-126. [20] Sheila M. Progress and opportunities for tissue-engineered skin. Nature 2007;445:874-880. [21] Hagiwara H, Shimonaka M, Morisaki M, Ikekawa N, Inada Y. Sitosterol-stimulative production of plasminogen activator in cultured endothelial cells from bovine carotid artery. Thromb Res 1984;33:363-370. [22] Wang HJ, Chen TM, Cheng TY. Use of a porcine dermis template to enhance widely expanded mesh autologous split-thickness skin graft growth: preliminary report. J Trauma 1997;42:177-182. [23] Hsu S, Lin CH. The properties of gelatin-poly (γ-glutamic acid) hydrogels as biological glues. Biorheology 2007;44:17-28. [24] Hsu S, Tseng HJ, Lin YC. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010;31:6796-6808. [25] Mao J, Zhao L, De Yao K, Shang Q, Yang G, Cao Y. Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 2003;64:301-308. [26] Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res 2001;55:538-546. [27] Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, Yao KD. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 2003;24:3859-3868. [28] Tan H, Gong Y, Lao L, Mao Z, Gao C. Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci Mater Med 2007;18:1961-1968. [29] Tan H, Wu J, Lao L, Gao C. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 2009;5:328-337. [30] Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009;183:7787-7798. [31] Zheng JP, Wang CZ, Wang XX, Wang HY, Zhuang H, Yao KD. Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering. Reactive and Functional Polymers 2007;67:780-788. [32] Sung HW, Chang WH, Ma CY, Lee MH. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 2003;64:427-438. [33] Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y. A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed 2004;15:25-40. [34] Tschachler E, Reinisch CM, Mayer C, Paiha K, Lassmann H, Weninger W. Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve end organ accessible to extensive analysis. J Invest Dermatol 2004;122:177-182. [35] Hultman CS, Brinson GM, Siltharm S, deSerres S, Cairns BA, Peterson HD, Meyer AA. Allogeneic fibroblasts used to grow cultured epidermal autografts persist in vivo and sensitize the graft recipient for accelerated second-set rejection. J Trauma 1996;41:51-58. [36] Lamme EN, Van Leeuwen RT, Brandsma K, Van Marle J, Middelkoop E. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol 2000;190:595-603. [37] Mitrano TI, Grob MS, Carrión F, Nova-Lamperti E, Luz PA, Fierro FS, Quintero A, Chaparro A, Sanz A. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 2010;81:917-925. [38] Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 2009;219:667-676. [39] Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 2007;13:767-773. [40] Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 2005;140:138-143. [41] Fournier BP, Ferre FC, Couty L, Lataillade JJ, Gourven M, Naveau A, Coulomb B, Lafont A, Gogly B. Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A 2010;16:2891-2899. [42] El-Ghalbzouri A, Lamme EN, Van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 2004;25:2987-2996. [43] Fartasch M, Ponec M. Improved barrier structure formation in air-exposed human keratinocyte culture systems. J Invest Dermatol 1994;102:366-374. [44] Ura H, Takeda F, Okochi H. An in vitro outgrowth culture system for normal human keratinocytes. J Dermatol Sci 2004;35:19-28. [45] McPherson TB, Liang H, Record RD, Badylak SF. Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng 2000;6:233-239. List of publications Ph.D. period [1] Hsiang-Jung Tseng, Tai-Li Tsou, Hsian-Jenn Wang and Shan-hui Hsu. Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 2011; in press. (SCI Imapct Factor 3.534; 6/69) [2] Hsiang-Jung Tseng, Jiang-Jen Lin, Tung-Tso Ho, Sheng-Mao Tseng and Shan-hui Hsu. The biocompatibility and antibacterial activity of nanocomposites from polyurethane and nano silicate platelets. Journal of Biomedical Materials Research: Part A 2011; in press. (SCI Imapct Factor 3.044; 12/69) [3] Shan-hui Hsu, Yu-Bin Chang, Ching-Lin Tsai, Keng-Yen Fu, Shu-Hua Wang and Hsiang-Jung Tseng. Characterization and biocompatibility of chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces 2011; 85:198-206. (SCI Imapct Factor 2.780; 9/25) [4] Shan-hui Hsu, Hsiang-Jung Tseng and Yu-Chun Lin. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010; 31:6796-6808. (SCI Imapct Factor 7.882; 2/69) [5] Shan-hui Hsu, Hsiang-Jung Tseng, Huey-Shan Hung, Ming-Chien Wang, Chiung-Hui Hung, Pei-Ru Li and Jiang-Jen Lin. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. ACS Applied Materials and Interfaces 2009; 1:2556-2564. (SCI Imapct Factor 2.925; 36/222) [6] Hsiang-Jung Tseng, Shan-hui Hsu, Mien-Win Wu, Tien-Hsiang Hsueh and Pei-Chi Tu. Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers and Polymers 2009; 10:53-59. (SCI Imapct Factor 0.832; 7/21) [7] Shan-hui Hsu, Cheng-Ming Tang and Hsiang-Jung Tseng. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites. Acta Biomaterialia 2008; 4:1797-1808. (SCI Imapct Factor 4.822; 3/69) [8] Shan-hui Hsu, Cheng-Ming Tang and Hsiang-Jung Tseng. Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response. Biomacromolecules 2008; 9:241-248. (SCI Imapct Factor 5.325; 4/79) [9] Shan-hui Hsu, Cheng-Ming Tang and Hsiang-Jung Tseng. Biocompatibility of poly(ether)urethane-gold nanocomposites. Journal of Biomedical Material Research: Part A 2006; 79:759-770. (SCI Imapct Factor 3.044; 12/69) [10] Shan-hui Hsu and Hsiang-Jung Tseng. In vitro biocompatibility of PTMO-based polyurethanes and those containing PDMS blocks. Journal of Biomaterials Applications 2004; 19, 135-146. (SCI Imapct Factor 2.246; 22/69) Master's period [1] Shan-hui Hsu, Hsiang-jung Tseng and Meng-show Wu. Comparative in vitro evaluation of two different preparations of small-diameter polyurethane vascular grafts. Artificial Organs 2000; 24:119-128. (SCI Imapct Factor 1.719; 33/69) [2] Shan-hui Hsu, Hsiang-jung Tseng and Zhen-kai Fang. Polyurethane blended with polylactides for improved cell adhesion and reduced platelet activation. Artificial Organs 1999; 23:958-961. (SCI Imapct Factor 1.719; 33/69)
皮膚受傷可造成身體功能失去平衡,臟器嚴重失調,甚至因而死亡,所以大面積的創傷就顯露出人工皮膚的需求。一般使用於燒傷或外傷之創傷敷料與人工皮膚表面需具有一層薄膜作為阻絕層保護薄膜底下之人工皮膚及組織,避免外部細菌侵入及感染,而人工皮膚本身須具備吸收體內滲出液、可供細胞進入及繁殖的特點。本研究中,水性聚胺酯(PU)與奈米尺寸材料(例奈米銀或奈米矽片)混摻提供暫時性的阻絕層,生物可降解支架則開發在阻絕層下。在論文第一部份,奈米複合材料顯示有良好的奈米粒子分佈,直到30 ppm的奈米銀導入,並由TEM確認。PU含有奈米銀粒子時氧化降解會減少,特別是在30 ppm時(PU-Ag 30 ppm)。PU-Ag 30 ppm相對於PU及其他濃度的奈米銀複合材料增加了纖維母細胞的貼附及內皮細胞的反應,減少單核球及血小板活化。大鼠的皮下植入印證了PU-Ag 30 ppm有較好的生物相容性。枯草桿菌、大腸桿菌及抗銀離子大腸桿菌黏著在所有濃度的PU奈米銀複合材料上都是較低的。所有的成果與奈米銀的高度分散有關。另一方面,由聚醚型水性PU混合了0.1 %矽片材料組成了奈米複合材料,這矽片材料有天然黏土,脫層黏土[奈米矽片(NSP)]及十八個碳鏈脂肪胺修飾的NSP (NSP-S)。奈米複合材料含NSP (PU-NSP)時有較佳的內皮細胞貼附及基因表現。PU-NSP和PU-NSP-S有較好的生物相容性是由大鼠皮下植入試驗證實,因其包覆的外來物膠囊厚度較薄。PU-NSP和PU-NSP-S有較強的抑菌率顯露出脫層黏土在高分子載體中可能與微生物會有交互影響。在第二部分中,幾丁聚醣溶液和明膠溶液混合並經過冷凍乾燥後,可製備多孔的皮膚組織工程支架。不同的交聯劑包括戊二醛、1-(3-二甲基胺丙基)-3-乙基碳二亞胺(EDC)、梔子素使用在幾丁聚醣和明膠的支架上,可使其生物穩定性增加。分析人類纖維母細胞在支架中生長,發現以EDC交聯的支架在第四天有最大量的細胞。EDC交聯的支架與市售膠原蛋白敷料產品在乾狀態有相似抗張模數、在濕狀態有相似壓縮模數。此支架同時顯示了適合的孔洞尺寸、高水吸收率及細胞培養期間具有優良尺寸安定性。一個以明膠為基底的特別生物膠適用於幾丁聚醣和明膠支架的上層,同時角質細胞植覆在這上面來模擬表皮。14天後生物膠降解,同時角質細胞在支架上面成長形成一個單層的構造。本研究證實了在EDC交聯的幾丁聚醣明膠支架上植覆人類纖維母細胞可以提供真皮結構,同時塗佈生物膠植覆角質細胞可以提供表皮結構。這種結合體結合了真皮層及表皮層可以幫助皮膚再生,也許有潛力可以使用在組織工程皮膚。

Skin injury could make the body to lose equilibrium, to make the organ disorder seriously, or even to dead. Therefore, large area trauma presented the demand of artificial skin. Generally, the artificial skin or the trauma dressing used in the treatment of burn or trauma need cover a film as the barrier layer to protect the artificial skin or tissue. This treatment could also prevent the bacteria invasion or infection. Meanwhile, the artificial skin must have some characteristics such as the adsorption of body fluid penetration, the cell entering into skin or proliferation. In this study, waterborne polyurethane (PU) was blended with nano-scale materials (e.g. nano silver or nano silicate platelets) to serve as the tentative barrier layer, the biodegradable scaffold under the barrier layer was developed. In the first part, the PU-Ag nanocomposites exhibited good nanoparticle dispersion up to 30 ppm of nano Ag, confirmed by the transmission electron microscopy. The oxidative degradation of PU-Ag was inhibited in all concentrations of nano Ag tested, especially at 30 ppm (”PU-Ag 30 ppm”). PU-Ag 30 ppm showed enhanced fibroblast attachment and endothelial cell response, as well as reduced monocyte and platelet activation, relative to PU alone or nanocomposites at the other silver contents. The rat subcutaneous implantation confirmed the better biocompatibility of the nanocomposites. The adhesion of Bacillus subtilis, Escherichia (E.) coli or Ag+-resistant E. coli on PU-Ag nanocomposites was significantly lower at all concentrations of nano Ag tested. The dispersion of nano Ag was highly associated with the overall performance. On the other hand, nanocomposites from a polyether-type waterborne PU and 0.1 wt% of silicate materials were prepared. The individual silicate materials were natural clays, their exfoliated clays [nano silicate platelets (NSP)], and NSP modified with C18 fatty amine (NSP-S). The nanocomposite containing NSP (PU-NSP) showed better endothelial cell attachment and gene expression. The better biocompatibility of PU-NSP and PU-NSP-S was evidenced by the lower thickness of foreign body capsules in rat subcutaneous implantation. PU-NSP and PU-NSP-S showed strong bacteriostatic effects, which suggested that the nano clay in the polymer matrix may still interact with the microbes. In the second part, porous scaffolds for dermal tissue engineering were fabricated by freeze-drying the mixture of chitosan and gelatin (CG) solutions. Different crosslinking agents including glutaraldehyde, 1-(3-dimethylaminopropyl)-3-ethyl-carbodimide hydrochloride (EDC) and genipin were used to crosslink the scaffolds and improve their biostability. The proliferation of human fibroblasts in the scaffolds was analyzed. It was found that EDC crosslinked scaffolds had the greatest amount of cells after four days. EDC crosslinked CG scaffolds had similar tensile modulus in the dry state and compressive modulus in the wet state as the commercial collagen wound dressing product. They also showed appropriate pore sizes, high water absorption, and good dimensional stability during cell culture. A special gelatin-based bioglue was applied on top of the CG scaffolds where keratinocytes were seeded to mimic the epidermal structure. After 14 days, the bioglue was degraded and the keratinocytes grew to form monolayer on top of the scaffolds. This study demonstrated that CG scaffolds crosslinked by EDC and seeded with human fibroblasts could serve as dermal constructs, while the bioglue coating seeded with keratinocytes could serve as the epidermal constructs. Such combination may help to regenerate skin with integrated dermal and epidermal layers. The combination may have potential use in the tissue-engineered skin.
其他識別: U0005-1507201114465200
Appears in Collections:化學工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.