Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3901
標題: 有機添加劑在電鍍銅填充印刷電路板微米導孔上的研究與應用
Studies and Application of Organic Additives on Microvia Filling of Printed Circuit Boards by Copper Electroplating
作者: 顏銘瑤
Yen, Ming-Yao
關鍵字: electroplating;電鍍銅;copper;PCB;organic additives;Microvia Filling;銅;有機添加劑;電鍍添加劑;盲孔填孔;印刷電路板
出版社: 化學工程學系所
引用: 1 T. Kobayashi, J. Kawasaki, K. Mihara, and H. Honma,"Via-Filling Using Electroplating for Build-up PCBs", Electrochim. Acta, 47, 85 (2001). 2 W. P. Dow, H. S. Huang, and Z. Lin, "Interactions Between Brightener and Chloride Ions on Copper Electroplating for Laser-Drilled Via-Hole Filling", Electrochem. Solid-State Lett., 6, C134 (2003). 3 W. P. Dow and H. H. Chen, "A Novel Copper Electroplating Formula for Laser-Drilled Micro Via and Through Hole Filling", Circuit World, 30, 33 (2004). 4 T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, "Superconformal Electrodeposition of Copper", Electrochem. Solid-State Lett., 4, C26 (2001). 5 A. C. West, S. Mayer, and J. Reid, "A Superfilling Model that Predicts Bump Formation", Electrochem. Solid-State Lett., 4, C50 (2001). 6 P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, "Damascene Copper Electroplating for Chip Interconnections", IBM J. Res. Dev., 42, 567 (1998). 7 M. Yokoi, S. Konishi, and T. Hayashi, "Adsorption Behavior of Polyoxyethyleneglycole on the Copper Surface in an Acid Copper Sulfate Bath", Denki Kagaku oyobi Kogyo Butsuri Kagaku, 52, 218 (1984). 8 J. D. Reid and A. P. David, "Effects of Polyethylene Glycol on the Electrochemical Characteristics of Copper Cathodes in an Acid Copper Medium", Plat. Surf. Finish., 74, 66 (1987) 9 J. P. Healy, D. Pletcher, and M. Goodenough, "The Chemistry of the Additives in an Acid Copper Electroplating Bath: Part I. Polyethylene Glycol and Chloride Ion", J. Electroanal. Chem., 338, 155 (1992). 10 D. Stoychev and C. Tsvetanov, "Behavior of Poly(Ethylene Glycol) During Electrodeposition of Bright Copper Coatings in Sulfuric Acid Electrolytes", J. Appl. Electrochem., 26, 741 (1996). 11 J. J. Kelly and A. C. West, "Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study", J. Electrochem. Soc., 145, 3472 (1998). 12 J. J. Kelly and A. C. West, "Copper Deposition in the Presence of Polyethylene Glycol II. Electrochemical Impedance Spectroscopy", J. Electrochem. Soc., 145, 3477 (1998). 13 K. Doblhofer, S. Wasle, D. M. Soares, K. G. Weil, and G. Ertl, "An EQCM Study of the Electrochemical Copper(II)/Copper(I)/Copper System in the Presence of PEG and Chloride Ions", J. Electrochem. Soc., 150, C657 (2003). 14 Z. V. Feng, X. Li, and A. A. Gewirth, "Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study", J. Phys. Chem. B, 107, 9415 (2003). 15 T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, "Superconformal Electrodeposition of Copper in 500-90 nm Features", J. Electrochem. Soc., 147, 4524 (2000). 16 P. Taephaisitphongse, Y. Cao, and A. C. West, "Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition", J. Electrochem. Soc., 148, C492 (2001). 17 M. Kang and A. A. Gewirth, "Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD) Copper Substrates", J. Electrochem. Soc., 150, C426 (2003). 18 K. Kondo, T. Matsumoto, and K. Watanabe, "Role of Additives for Copper Damascene Electrodeposition Experimental Study on Inhibition and Acceleration Effects", J. Electrochem. Soc., 151, C250 (2004). 19 K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, "Copper Damascene Electrodeposition and Additives", J. Electroanal. Chem., 559, 137 (2003). 20 Y. Cao, P. Taephaisitphongse, R. Chalupa, and A. C. West, "Three-Additive Model of Superfilling of Copper", J. Electrochem. Soc., 148, C466 (2001). 21 W. P. Dow and H. S. Huang, "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition I. Studies Using SEM and Optical Microscope", J. Electrochem. Soc., 152, C67 (2005). 22 W. P. Dow, H. S. Huang, M. Y. , and H. H. Chen, "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition II. Studies Using EPR and Galvanostatic Measurements", J. Electrochem. Soc., 152, C77 (2005). 23 W. P. Dow, H. S. Huang, M. Y. , and H. C. Huang, "Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating", J. Electrochem. Soc., 152, C425 (2005). 24 M. Hasegawa, Y. Negishi, T. Nakanishi, and T. Osaka, "Effects of Additives on Copper Electrodeposition in Submicrometer Trenches", J. Electrochem. Soc., 152, C221 (2005). 25 K. R. Hebert, S. Adhikari, and J. E. Houser, "Chemical Mechanism of Suppression of Copper Electrodeposition by Poly(ethylene glycol)", J. Electrochem. Soc., 152, C324 (2005). 26 T. P. Moffat, D. Wheeler, M. D. Edelstein, and D. Josell, "Superconformal film growth: Mechanism and Quantification", IBM J. Res. Dev., 49, 19 (2005). 27 Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, "Chloride Ion Catalysis of the Copper Deposition Reaction", J. Electrochem. Soc., 142, L87 (1995). 28 H. P. Lee, K. Nobe, and A. J. Pearlstein, "Film Formation and Current Oscillations in the Electrodissolution of Cu in Acidic Chloride Media I. Experimental Studies", J. Electrochem. Soc., 132, 1031 (1985). 29 A. J. Pearlstein, H. P. Lee, and K. Nobe, "Film Formation and Current Oscillations in the Electrodissolution of Copper in Acidic Chloride Media II. Mathematical Model", J. Electrochem. Soc., 132, 2159 (1985). 30 V. D. Jovi and B. M. Jovi , "Copper electrodeposition from a copper acid baths in the presence of PEG and NaCl ", J. Serb. Chem. Soc., 66, 935 (2001). 31 M. Tan and J. N. Harb, "Additive Behavior during Copper Electrodeposition in Solutions Containing Cl-, PEG, and SPS", J. Electrochem. Soc., 150, C420 (2003). 32 T. P. Moffat, D. Wheeler, and D. Josell, "Electrodeposition of Copper in the SPS-PEG-Cl Additive System", J. Electrochem. Soc., 151, C262 (2004). 33 K. R. Hebert, "Role of Chloride Ions in Suppression of Copper Electrodeposition by Polyethylene Glycol", J. Electrochem. Soc., 152, C283 (2005). 34 G. M. Brown and G. A. Hope, "A SERS study of SO2-4 and Cl-ion adsorption at a copper electrode in-situ ", J. Electroanal. Chem., 405, 211 (1996). 35 G. M. Brown and G. A. Hope, "Confirmation of Thiourea/Chloride ion Coadsorption at a Copper Electrode by In Situ SERS spectroscopy", J. Electroanal. Chem., 413, 153 (1996). 36 O. Azzaroni, P. L. Schilardi, and R. C. Salvarezza, "Metal electrodeposition on self-assembled monolayers: a versatile tool for pattern transfer on metal thin films", Electrochim. Acta, 48, 3107 (2003). 37 O. Azzaroni, M. E. Vela, M. Fonticelli, G. Benítez, P. Carro, B. Blum, and R. C. Salvarezza, "Electrodesorption Potentials of Self-Assembled Alkanethiolate Monolayers on Copper Electrodes. An Experimental and Theoretical Study", J. Phys. Chem. B, 107, 13446 (2003). 38 J. J. Calvente, Z. Ková ová, M. D. Sanchez, R. Andreu, and W. R. Fawcett, "Desorption of Spontaneously Adsorbed and Electrochemically Readsorbed 2-Mercaptoethanesulfonate on Au(111)", Langmuir, 12, 5696 (1996). 39 D.-F. Yang and M. Morin, "Chronoamperometric study of the reductive desorption of alkanethiol self-assembled monolayers", J. Electroanal. Chem., 441, 173 (1998). 40 F. Loglio, M. Schweizer, and D. M. Kolb, "In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes", Langmuir, 19, 830 (2003). 41 S. Miura and H. Honma, "Advanced Copper Electroplating for Application of Electronics", Surf. Coat. Technol., 169-170, 91 (2003). 42 L. T. Koh, G. Z. You, C. Y. Li, and P. D. Foo, "Investigation of the Effects of Byproduct Components in Cu Plating for Advanced Interconnect Metallization", Microelectronics J., 33, 229 (2002). 43 T. P. Moffat, D. Wheeler, C. Witt, and D. Josell, "Superconformal Electrodeposition Using Derivitized Substrates", Electrochem. Solid-State Lett., 5, C110 (2002). 44 S. K. Cho, S.-K. Kim, and J. J. Kim, "Superconformal Cu Electrodeposition Using DPS A Substitutive Accelerator for Bis(3-sulfopropyl) Disulfide", J. Electrochem. Soc., 152, C330 (2005). 45 M. A. Schneeweiss, H. Hagenström, M. J. Esplandiu, and D. M. Kolb, "Electrolytic Metal Deposition onto Chemically Modified Electrodes", Appl. Phys. A, 69, 537 (1999). 46 P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of N-Alkanethiols on the Coinage Metal Surfaces, Copper, Silver, and Gold", J. Am. Chem. Soc., 113, 7152 (1991). 47 A. Kudelski, "Chemisorption of 2-Mercaptoethanol on Silver, Copper, and Gold: Direct Raman Evidence of Acid-Induced Changes in Adsorption/Desorption Equilibria", Langmuir, 19, 3805 (2003). 48 J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chem. Rev., 105, 1103 (2005). 49 W. D. Callister, Jr., Materials Science and Engineering: An Introduction, 6th Ed., p. 81, John Wiley & Sons, Inc., New York (2003). 50 H. Hagenström, M. A. Schneeweiss, and D. M. Kolb, "Modification of a Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition", Langmuir, 15, 7802 (1999). 51 M. Nishizawa, T. Sunagawa, and H. Yoneyama, "Underpotential Deposition of Copper on Gold Electrodes through Self-Assembled Monolayers of Propanethiol", Langmuir, 13, 5212 (1997). 52 M. Paunovic and M. Schlesinger, "Fundamentals of Electrochemical Deposition", p. 248, John Wiley & Sons, Inc., New York (1998). 53 M. Konôpka, R. Rousseau, I. Štich, and D. Mark, "Detaching Thiolates from Copper and Gold Clusters: Which Bonds to Break?", J. Am. Chem. Soc., 126, 12103 (2004). 54 A. V. Walker, T. B. Tighe, O. M. Cabarcos, M. D. Reinard, B. C. Haynie, S. Uppili, N. Winograd, and D. L. Allara, "The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers", J. Am. Chem. Soc., 126, 3954 (2004). 55 K. Takagi, H. Honma, and T. Sasabe, "Development of Sequential Build-Up Multilayer Printed Wiring Boards in Japan", IEEE Electr. Insul. Mag. (USA), 19, 27 (2003). 56 V. Sundaram, R. R. Tummala, F. Liu, P. A. Kohl, J. Li, S. A. Bidstrup-Allen, and Y. Fukuoka, "Next-Generation Microvia and Global Wiring Technologies for SOP", IEEE Trans. Adv. Packag., 27, 315 (2004). 57 J. J. Kelly, A.C. West, "Luminescence Studies of Semiconductor Electrodes", Electrochem. Solid-State Lett. 2, 561 (1999). 58 J. Reid, S. Mayer, E. Broadbent, E. Klawuhn, and K. Ashtiani, "Factors Influencing Damascene Feature Fill Using Copper PVD and Electroplating", Solid State Technol., 43, 86 (2000). 59 J. Reid, "Copper Electrodeposition: Principles and Recent Progress", Jpn. J. Appl. Phys., Part 1, 40, 2650 (2001). 60 T. P. Moffat, D. Wheeler, S. K. Kim, and D. Josell, "Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing", Electrochim. Acta, 53, 145 (2007). 61 H. Honma, "Plating Technology for Electronics Packaging", Electrochim. Acta, 47, 75 (2001). 62 M. J. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, and S. Hayashi, "Copper Electroplating Technology for Microvia Filling", Circuit World, 29, 9 (2003). 63 A. Pohjoranta and R. Tenno, "A Method for Microvia-Fill Process Modeling in a Cu Plating System with Additives", J. Electrochem. Soc., 154, D502 (2007). 64 R. Tenno and A. Pohjoranta, "An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives", J. Electrochem. Soc., 155, D383 (2008). 65 W. P. Dow, M. Y. , S. Z. Liao, Y. D. Chiu, and H. C. Huang, "Filling Mechanism in Microvia Metallization by Copper Electroplating", Electrochim. Acta, 53, 8228 (2008). 66 J. J. Sun, K. Kondo, T. Okamura, S. J. Oh, M. Tomisaka, H. Yonemura, M. Hoshino, and K. Takahashi, "High-Aspect-Ratio Copper Via Filling Used for Three-Dimensional Chip Stacking", J. Electrochem. Soc., 150, G355 (2003). 67 K. Takahashi, Y. Taguchi, M. Hoshino, K. Tanida, M. Umemoto, T. Yonezawa, and K. Kondo, "Development of Less Expensive Process Technologies for Three-Dimensional Chip Stacking with Through-Vias", Electron. Commun. Jpn., Part 2: Electron., 88, 50 (2005). 68 L. W. Schaper, S. L. Burkett, S. Spiesshoefer, G. V. Vangara, Z. Rahman, and S. Polamreddy, "Architectural Implications and Process Development of 3-D VLSI -Axis Interconnects Using Through Silicon Vias", IEEE Trans. Adv. Packag., 28, 356 (2005). 69 K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkeye, "High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking", J. Electrochem. Soc., 152, H173 (2005). 70 A. W. Topol, D. C. La Tulipe, Jr., L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong, "Three-Dimensional Integrated Circuits", IBM J. Res. Dev., 50, 491 (2006). 71 K. Oyamada, I. Koiwa, and H. Honma, "Via-filling by Copper Electroplating using Stepwise Current Control", Electrochemistry, 74, 212 (2006). 72 S. Spiesshoefer, J. Patel, T. Lam, L. Cai, S. Polamreddy, R. F. Figueroa, S. L. Burkett, L. Schaper, R. Geil, and B. Rogers, "Copper Electroplating to Fill Blind Vias for Three-Dimensional Integration", J. Vac. Sci. Technol. A, 24, 1277 (2006). 73 B. H. Cho, J. J. Yun, and W. J. Lee, "Filling of Very Fine Via Holes for Three-Dimensional Packaging by Using Ionized Metal Plasma Sputtering and Electroplating", Jpn. J. Appl. Phys., Part 2, 46, L1135 (2007). 74 C. Fang, E. Foca, S. Xu, J. Carstensen, and H. Föll, "Deep Silicon Macropores Filled with Copper by Electrodeposition", J. Electrochem. Soc., 154, D45 (2007). 75 R. Nagarajan, K. Prasad, L. Ebin, and B. Narayanan, "Development of Dual-Etch Via Tapering Process for Through-Silicon Interconnection", Sens. Actuators, A, 139, 323 (2007). 76 W. P. Dow, H. H. Chen, M. Y. , W. H. Chen, K. H. Hsu, P. Y. Chuang, H. Ishizuka, N. Sakagawa, and R. Kimizukad, "Through-Hole Filling by Copper Electroplating", J. Electrochem. Soc., 155, D750 (2008). 77 T. P. Moffat, B. Baker, D. Wheeler, and D. Josell, "Accelerator Aging Effects During Copper Electrodeposition", Electrochem. Solid-State Lett., 6, C59 (2003). 78 A. Frank and A. J. Bard, "The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries", J. Electrochem. Soc., 150, C244 (2003). 79 C. Gabrielli, P. Mocoteguy, H. Perrot, A. Zdunek, P. Bouard, and M. Haddix, "Electrochemical Impedance Spectroscopy Investigation of Bath Aging in Damascene Process Chemistries", Electrochem. Solid-State Lett., 7, C31 (2004). 80 L. D''Urzo, H. H. Wang, A. Pa, and C. Zhi, "SPE-HPLC Detection of Organic Additives in Acidic Copper Plating Baths I. Sulfopropyl Disulfide-Based Brighteners", J. Electrochem. Soc., 152, C243 (2005). 81 L. D''Urzo, H. H. Wang, C. Tang, A. Pa, and C. Zhi, "Solid Phase Extraction-High-Performance Liquid Chromatography Detection of Organic Additives in Acidic Copper Baths II. Polyethylene-Glycol Based Suppressors", J. Electrochem. Soc., 152, C697 (2005); 82 R. Palmans, S. Claes, L. E. Vanatta, and D. E. Coleman, "Ion-Pair Chromatography of Bis (Sodium-Sulfopropyl) Disulfide Brightener in Acidic Copper Plating Baths", J. Chromatogr., A, 1085, 147 (2005). 83 C. Gabrielli, P. Moçotéguy, H. Perrot, A. Zdunek, and D. Nieto-Sanz, "A Model for Copper Deposition in the Damascene Process (Application to the Aging of the Deposition Bath", J. Electrochem. Soc., 154, D13 (2007). 84 B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, T. L. Xiang, and G. N. Chen, "In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode", J. Electrochem. Soc., 154, D516 (2007). 85 M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, and K. Wetzig, "Incorporation of Sulfur, Chlorine, and Carbon into Electroplated Cu Thin Films", Microelectron. Eng., 84, 54 (2007). 86 C. Gabrielli, P. MoÇotéguy, H. Perrot, D. Nieto-Sanz, and A. Zdunek, "An Investigation of Copper Interconnect Deposition Bath Ageing By Electrochemical Impedance Spectroscopy", J. Appl. Electrochem., 38, 457 (2008). 87 W. P. Dow, M. Y. , W. B. Lin, and S. W. Ho, "Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating", J. Electrochem. Soc., 152, C769 (2005). 88 J. G. Long, P. C. Searson, and P. M. Vereecken, "Electrochemical Characterization of Adsorption-Desorption of the Cuprous-Suppressor-Chloride Complex during Electrodeposition of Copper", J. Electrochem. Soc., 153, C258 (2006). 89 W. Wang and Y. B. Li, "Voltammetric Study of the Inhibition Effect of Polyethylene Glycol and Chloride Ions on Copper Deposition", J. Electrochem. Soc., 155, D263 (2008). 90 M. E. Huerta Garrido and M. D. Pritzker, "Effect of Cl− on the Adsorption-Desorption Behavior of PEG", J. Electrochem. Soc., 155, D332 (2008). 91 H. M. Chen, S. J. Parulekar, and A. Zdunek, "Interactions of Chloride and Polyethylene Glycol in Acidic Copper Sulfate Electrolyte", J. Electrochem. Soc., 155, D341 (2008). 92 J. P. Healy, D. Pletcher, and M. Goodenough, "The Chemistry of the Additives in an Acid Copper Electroplating Bath: Part III. The Mechanism of Brightening by 4,5-Dithia-Octane-1, 8-Disulphonic Acid", J. Electroanal. Chem., 338, 179 (1992). 93 E. E. Farndon, F. C. Walsh, and S. A. Campbell, "Effect of Thiourea, Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on The Kinetics of Copper Deposition From Dilute Acid Sulphate Solutions", J. Appl. Electrochem., 25, 574 (1995). 94 P. M. Vereecken, R. A. Binstead, H. Deligianni, and P. C. Andricacos, "The Chemistry of Additives in Damascene Copper Plating", IBM J. Res. Dev., 49, 3 (2005). 95 Z. D. Schultz, Z. V. Feng, M. E. Biggin, and A. A. Gewirth, "Vibrational Spectroscopic and Mass Spectrometric Studies of the Interaction of Bis(3-sulfopropyl)-disulfide with Cu Surfaces", J. Electrochem. Soc., 153, C97 (2006). 96 B. Bozzini, L. D''Urzo, V. Romanello, and C. Mele, "Electrodeposition of Cu from Acidic Sulfate Solutions in the Presence of Bis-(3-sulfopropyl)-disulfide (SPS) and Chloride Ions", J. Electrochem. Soc., 153, C254 (2006). 97 M. L. Walker, L. J. Richter, and T. P. Moffat, "Competitive Adsorption of PEG, Cl-, and SPS/MPS on Cu: An In Situ Ellipsometric Study", J. Electrochem. Soc., 153, C557 (2006). 98 M. Tan, C. Guymon, D. R. Wheeler, and J. N. Harb, "The Role of SPS, MPSA, and Chloride in Additive Systems for Copper Electrodeposition", J. Electrochem. Soc., 154, D78 (2007). 99 M. L. Walker, L. J. Richter, and T. P. Moffat, " Potential Dependence of Competitive Adsorption of PEG, Cl-, and SPS/MPS on Cu: An In Situ Ellipsometric Study", J. Electrochem. Soc., 154, D277 (2007). 100 J. B. Schlenoff, M. Li, and H. Ly, "Stability and Self-Exchange in Alkanethiol Monolayers", J. Am. Chem. Soc., 117, 12528 (1995). 101 A. Ulman, "Formation and Structure of Self-Assembled Monolayers", Chem. Rev., 96, 1533 (1996). 102 S. Chon and W. Paik, "Adsorption of Self-Assembling Sulfur Compounds Through Electrochemical Reactions: Effects of Potential, Acid and Oxidizing Agents", Phys. Chem. Chem. Phys., 3, 3405 (2001). 103 G. Hager and A. G. Brolo, "Adsorption/Desorption Behaviour of Cysteine and Cystine in Neutral and Basic Media: Electrochemical Evidence for Differing Thiol and Disulfide Adsorption to a Au(111) Single Crystal Electrode", J. Electroanal. Chem., 550-551, 291 (2003). 104 C. J. Campbell, S. Soh, and B. A. Grzybowski, "Blocking of Disulfide Adsorption by Coadsorbing ω-Functionalized Alkane Thiols Revealed by Wet Stamping and Fluorescence Microscopy", Langmuir, 24, 11600 (2008). 105 Z. Y. Jian, T. Y. Chang, Y. C. Yang, W. P. Dow, S. L. Yau, and Y. L. Lee, "3-Mercapto-1-propanesulfonic acid and Bis(3-sulfopropyl) Disulfide Adsorbed on Au(111): In Situ Scanning Tunneling Microscopy and Electrochemical Studies", Langmuir, 25, 179 (2009). 106 W. P. Dow and C. W. Liu, "Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method", J. Electrochem. Soc., 153, C190 (2006). 107 W. P. Dow and M. Y. , "Microvia Filling over Self-Assembly Disulfide Molecule on Au and Cu Seed Layers", Electrochem. Solid-State Lett., 8, C161 (2005). 108 A. Kudelski, "Raman and Electrochemical Characterization of 2-Mercaptoethanesulfonate Monolayers on Silver: A Comparison with Monolayers of 3-Mercaptopropionic Acid", Langmuir, 18, 4741 (2002). 109 A. Kudelski, "Structures of Monolayers Formed from Different HS-(CH2)2-X Thiols on Gold, Silver and Copper: Comparitive Studies by Surface-Enhanced Raman Scattering", J. Raman Spectrosc., 34, 853 (2003). 110 C. Mokrani, J. Fatisson, L. Guérente, and P. Labbé, "Structural Characterization of (3-Mercaptopropyl)sulfonate Monolayer on Gold Surfaces", Langmuir, 21, 4400 (2005). 111 D. W. M. Arrigan, T. Iqbal, and M. J. Pickup, "Underpotential Deposition of Copper at Mercaptoalkane Sulfonate-Coated Polycrystalline Gold", Electroanalysis, 13, 751 (2001). 112 A. Kudelski, M. Pecul, and J. Bukowska, "Interaction of 2-Mercaptoethanesulfonate Monolayers on Silver with Sodium Cations", J. Raman Spectrosc., 33, 796 (2002). 113 Y. Ooi, D. Hobara, M. Yamamoto, and T. Kakiuchi, "Ideal Nonideality in Adsorption of 2-Aminoethanethiol and 2-Mercaptoethane Sulfonic Acid To Form Electrostatically Stabilized Binary Self-Assembled Monolayers on Au(111)", Langmuir, 21, 11185 (2005). 114 Y. Kitagawa, D. Hobara, M. Yamamoto, and T. Kakiuchi, "Counterion Binding Induces Attractive Interactions Between Negatively-Charged Self-Assembled Monolayer of 3-Mercaptopropionic Acid On Au(111) in Reductive Desorption", J. Solid State Electrochem., 12, 461 (2008). 115 N. S. Pesika, K. J. Stebe, and P. C. Searson, "Kinetics of Desorption of Alkanethiolates on Gold", Langmuir, 22, 3474 (2006). 116 W. J. Lorenz and G. Staikov, "2D and 3D Thin Film Formation and Growth Mechanisms in Metal Electrocrystallization: An Atomistic View by In Situ STM", Surf. Sci., 335, 32 (1995). 117 A. Vaskevich and I. Rubinstein, "Underpotential Deposition of Copper in Acetonitrile", J. Electroanal. Chem., 491, 87 (2000). 118 S. E. Bae and A. A. Gewirth, "In Situ EC-STM Studies of MPS, SPS, and Chloride on Cu(100): Structural Studies of Accelerators for Dual Damascene Electrodeposition", Langmuir, 22, 10315 (2006). 119 G. K. Jennings and P. E. Laibinis, "Underpotentially Deposited Metal Layers of Silver Provide Enhanced Stability to Self-Assembled Alkanethiol Monolayers on Gold", Langmuir, 12, 6173 (1996). 120 G. K. Jennings and P. E. Laibinis, "Self-Assembled n-Alkanethiolate Monolayers on Underpotentially Deposited Adlayers of Silver and Copper on Gold", J. Am. Chem. Soc., 119, 5208 (1997). 121 D. Oyamatsu, M. Nishizawa, S. Kuwabata, and H. Yoneyama, "Underpotential Deposition of Silver onto Gold Substrates Covered with Self-Assembled Monolayers of Alkanethiols To Induce Intervention of the Silver between the Monolayer and the Gold Substrate", Langmuir, 14, 3298 (1998). 122 C. Silien and M. Buck, "On the Role of Extrinsic and Intrinsic Defects in the Underpotential Deposition of Cu on Thiol-Modified Au(111) Electrodes", J. Phys. Chem. C, 112, 3881 (2008). 123 D. W. M. Arrigan, L. Le Bihan, and M. J. Pickup, "Apparent Enhanced Underpotential Voltammetry of Lead(II) at A Spontaneously Adsorbed Monolayer-Coated Gold Electrode", Analyst, 124, 1797 (1999). 124 G. Herzog and D. W. M. Arrigan, "Application of Disorganized Monolayer Films on Gold Electrodes to the Prevention of Surfactant Inhibition of the Voltammetric Detection of Trace Metals via Anodic Stripping of Underpotential Deposits: Detection of Copper", Anal. Chem., 75, 319 (2003). 125 M. J. Esplandiú, H. Hagenström, and D. M. Kolb, "Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry", Langmuir, 17, 828 (2001). 126 J. Bard and L. R. Faulkner, "Electrochemical Methods: Fundamentals and Applications", 2nd ed., Chap. 3, p. 116, John Wiley & Sons, Inc., New York (2001). 127 M. Y. Yen, Master Thesis, "Studies and Applications of Self-Assembled Monolayers on Microvia Filling of PCB by Copper Plating", National Yunlin University of Science and Technology, Taiwan, (2004) (in Chinese). 128 S. N. Jenq, C. C. Wan, and Y. Y. Wang, "The Influence of Self-Assembled Disulfide Additive on the Pattern Shape by Cu Electrodeposition Through Mask", J. Electroanal. Chem., 609, 68 (2007). 129 C. G. Guymon, J. N. Harb, R. L. Rowley, and D. R. Wheeler, "MPSA Effects on Copper Electrodeposition Investigated By Molecular Dynamics Simulations", J. Chem. Phys., 128, 044717-1 (2008). 130 B. Bozzini, C. Mele, L. D'urzo, V. Romanello, "An Electrochemical and In Situ SERS Study of Cu Electrodeposition from Acidic Sulphate Solutions in The Presence ff 3-Diethylamino-7-(4-Dimethylaminophenylazo)-5-Phenylphenazinium Chloride (Janus Green B", J. Appl. Electrochem. 36, 973 (2006). 131 S. K. Kim, D. Josell, T.P. Moffat, "Electrodeposition of Cu in the PEI-PEG-Cl-SPS Additive System (Reduction of Overfill Bump Formation During Superfilling", J. Electrochem. Soc. 153, C616 (2006). 132 S. K. Kim, D. Josell, T.P. Moffat, "Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling", J. Electrochem. Soc. 153, C826 (2006). 133 M. J. Willey, J. Reid, A.C. West, "Adsorption Kinetics of Polyvinylpyrrolidone during Copper Electrodeposition", Electrochem. Solid-State Lett. 10, D38 (2007). 134 B. Bozzini, L. D'Urzo, C. Mele, "A Novel Polymeric Leveller for the Electrodeposition of Copper from Acidic Sulphate Bath: A Spectroelectrochemical Investigation", Electrochim. Acta 52, 4767 (2007). 135 U. Landau, J.J. D'Urso, D.B. Rear, "Electrodeposition Chemistry", U.S. Pat. 6,610,191 (2003). 136 W. P. Dow, M. Y. Yen, C. W. Chou, C. W. Liu, W. H. Yang, C. H. Chen, "Practical Monitoring of Filling Performance in a Copper Plating Bath", Electrochem. Solid-State Lett. 9, C134 (2006). 137 J. J. Kelly, A.C. West, "Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study", J. Electrochem. Soc. 145, 3472 (1998). 138 W. P. Dow, H. H. Chen, M. Y. Yen, C. W. Liu, "Simultaneous Filling of Microvia and Through Hole by Copper Electroplating for High Density Interconnection of PCB", ECS Trans. 2, 259 (2007). 139 W. L. Li, J.H. Ye, S.F.Y. Li, "Electrochemical Deposition of Copper on Patterned Cu/Ta(N)/SiO2 Surfaces for Super Filling of Sub-Micron Features", J. Appl. Electrochem. 31, 1395 (2001). 140 S. C. Chang, J. M. Shieh, K. C. Lin, B. T. Dai, T. C. Wang, C. F. Chen, M. S. Feng, Y. H. Li, C. P. Lu, "Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers", J. Vac. Sci. Technol. B 20, 1311 (2002). 141 M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa, K. Hayabusa, "Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition", Elec-trochem. Solid-State Lett. 5, C98 (2002). 142 B. H. Wu, C. C. Wan, Y. Y. Wang, "Void-Free Anisotropic Deposition for IC Interconnect with Polyethylene Glycol As the Single Additive Based on Uneven Adsorption Distribution", J. Appl. Electrochem. 33, 823 (2003). 143 Kobayashi, J. Kawasaki, K. Mihara, H. Honma, "Via-Filling Using Electroplating for Build-Up PCBs", Electrochim. Acta 47, 85, 85 (2001) . 144 A. Pohjoranta, R. Tenno, "A Method for Microvia-Fill Process Modeling in a Cu Plating System with Additives", J. Electrochem. Soc. 154 (2007) D502. 145 W. P. Dow, M. Y. Yen, C. W. Liu, Chen-Chia Huang, "Enhancement of Filling Performance of a Copper Plating Formula at Low Chloride Concentration", Electrochim. Acta, 53, 3610 (2008). 146 A. C. West, S. Mayer and J. Reid, "Leveling of 200 nm Features by Organic Additives", Electrochem. Solid-State Lett., 2, 561 (1999). 147 S. N. Jenq, C. C. Wan, Y. Y. Wang, H. W. Li, P. T. Liu, J. H. Chen, "Tapered Cu Pattern Metallization by Electrodeposition Through Mask", Electrochem. Solid-State Lett. 9 (2006) C167. 148 G. M. Brown, G. A. Hope, "A SERS Study of SO2−4 and Cl- Ion Adsorption at a Copper Electrode In-Situ", J. Electroanal. Chem., 405, 211 (1996). 149 T. Okubo, Y. Mizuno, K. Naoi, "Electrochemical Monitoring Method for Filling Capability of Copper Electroplating Solution for Via Filling", Journal of Japan Institute of Electronics Packaging, 8, 318 (2005). 150 W. P. Dow, C. W Liu, "Method for Monitoring The Filling Performance of Copper Plating Formula for Microvia Filling", The Republic of China, Taiwan Patent No. I292295 (2008). 151 W.B. Lin, and S. W. Ho, Bachelor Thesis, "Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling ", National Yunlin University of Science and Technology, Taiwan, (2005) (in Chinese). 152 C. W. Liu, Master Thesis, " Studies and development of a method for monitoring filling performance of copper electroplating", National Yunlin University of Science and Technology, Taiwan, (2006) (in Chinese). 153 S. Z. Liao, Master Thesis, "Studies of Convection Effect on Microvia Filling over Copper Electroplating", National Chung Hsing University, Taiwan, (2007) (in Chinese).
摘要: 
電鍍銅填充微米導孔技術能提供印刷電路板製造商在製程中的HDI技術及IC載板的產品具有品質可靠性、設計靈活性及較佳散熱性,本論文針對化學因素及物理的因素於電鍍銅填充微米導孔進行一系列的研究。在研究內容部分共分為五個部分:
首先,針對抑制劑聚乙烯醇(Polyethylene glycol,PEG)不同分子量對電鍍銅填充微米導孔能力影響及電化學行為研究。
第二部份,利用加速劑的自組裝薄膜(Self-Assembled Monolayers, SAM)的特性,研究在銅與金兩種不同基材的印刷電路板上形成SPS(Bis(3-Sufopropy) Disulfide,(NaSO3(CH2)3S)2)的SAMs在電鍍工作液不添加加速劑下對電鍍銅填充微米導孔能力影響。
第三部份,研究使用加速劑SPS的SAMs在金為基材上分別探討論其電鍍銅填充微米導孔能力與加速劑SPS的電鍍反應機構。
第四部份,研究低氯離子濃度與平整劑(Alcian Blue)對於電鍍銅填充微米導孔能力影響及電化學行為研究。
第五部份,我們利用設計一種微米導孔孔壁無金屬化的印刷電路板,探討在不同有機添加劑電鍍配方下填孔反應機構。
經由本文研究結果,可進一步了解有機添劑劑:抑制劑、加速劑、平整劑對於銅沈積的反應機構,可提供後人一些研究的思考方向與建言,期望藉此結果能將應用在電鍍銅填充微米導孔製程控制上。

Electrolytic copper microvia filling is an enabling technology, prominently used in today's manufacture of HDI and IC substrates products for better reliability, designed flexibility and thermal management. In this research, the study of how the chemical and physical factors affect the microvia filling technology is shown as following.
First of all, the influence of the molecular weight Mw of polyethylene glycol PEG on the microvia filling by copper electroplating was discussed, and the electrochemical behavior of PEG of different molecule weights in the copper electroplating was studied.
Secondly, Microvia filling process was achieved using an accelerator-free acid copper plating solution. The required accelerator (i.e., bis (3-sulfopropyl) disulfide, SPS) for the filling procedure was adsorbed on seed layers in advance. Effect of the seed layers of metallic materials, copper and gold on the microvia filling performance was discussed emphatically.
Thirdly, a plating process for microvia filling by Cu electroplating, carried out in a plating bath without an accelerator but with a suppressor only, was proposed in this work. The seed layer of microvia used for subsequent Cu-filling plating is Au formed by electroless plating. Effects of the seed layers of gold on the microvia filling performance and their mechanisms of action were mainly studied.
Fourthly, in this work, microvia filling was performed by copper electroplating using two plating formulas with and without a leveler at a low concentration of chloride. Effects of the low concentration of chloride on the microvia filling performance and their electrochemical behavior were was discussed.
Fifthly, the mechanism of microvia filling by copper electroplating was investigated by means of a special pattern design of printed circuit board (PCB). These microvias employed in this work had no sidewall copper layer. The outer and the inner copper layers of these microvias were connected together to the cathode during electroplating in order to clarify the mechanism of bottom-up filling. A plating formula that was composed of CuSO4, H2SO4, polyethylene glycol (PEG), bis (3-sulfopropyl) disulfide (SPS), Cl-, and Junas Green B (JGB) was employed as a model formula for studying the filling mechanism.
According to this research, we can understand the mechanism of copper deposition due to the additives of carrier, accelerator and Leveler molecules. Moreover, the research provides people with a further consideration. Finally, it is expected that this technology is applicable for control in a practical plating bath.
URI: http://hdl.handle.net/11455/3901
其他識別: U0005-1701201200301100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.