Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3916
DC FieldValueLanguage
dc.contributor李榮和zh_TW
dc.contributor詹立行zh_TW
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.author陳耀煌zh_TW
dc.contributor.authorChen, Yao-Huangen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T05:33:05Z-
dc.date.available2014-06-06T05:33:05Z-
dc.identifierU0005-1808201121414500zh_TW
dc.identifier.citation(1) 張正華等編著(2007),有機與塑膠太陽能電池(初版),台北市:五南. (2) Goetzberger, A.; Luther, A.; Willeke, G. Sol. Energy Mater. Sol. Cells 2002, 74, 1. (3) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676. (4) Brabec, C. J. ; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15. (5) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. (Washington, DC, U. S.) 2007, 107, 1324. (6) Hurd, F.; Livingston, R. The Journal of Physical Chemistry 1940, 44, 865. (7) Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613. (8) Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; Sariciftci, S. Chem. Phys. Lett. 2001, 340, 232. (9) Tracey M. Clarke and James R. Durrant Chem. Rev., 2010, 110, 11. (10) Yu, G.; Zhang, C.; Heeger, A. J. Appl. Phys. Lett. 1994, 64, 1540. (11) Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 1996, 68, 3120. (12) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science1995, 270, 1789. (13) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. (14) Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Adv. Mater. (Weinheim, Ger.) 2006, 18, 572. (15) Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. Proceedings of the National Academy of Sciences 2008, 105, 2783. (16)Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197. (17) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. (18) Kim, J. Y.; Kim, S. H.; Lee, H.-H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Adv. Mater. (Weinheim, Ger.) 2006, 18, 572. (19) Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. Proceedings of the National Academy of Sciences 2008, 105, 2783. (20) Schilinsky, P.; Waldauf, C.; Brabec, C. J. Appl. Phys. Lett. 2002, 81, 3885. (21) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85. (22) Riedel, I.; Dyakonov, V. physica status solidi (a) 2004, 201, 1332. (23)Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nano Lett. 2005, 5, 579. (24) Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C.; Cook, S.; Durrant, J. R. Appl. Phys. Lett. 2005, 86, 063502. (25) Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. J. Appl. Phys. 2005, 98, 043704. (26) Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. (27) Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506. (28) Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.;Ree, M. Nat. Mater. 2006, 5, 197. (29) White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S. Appl. Phys. Lett. 2006, 89, 143517. (30) Lim, B.; Baeg, K.-J.; Jeong, H.-G.; Jo, J.; Kim, H.; Park, J.-W.; Noh, Y.-Y.; Vak, D.; Park, J.-H.; Park, J.-W.; Kim, D.-Y. Adv. Mater. (Weinheim, Ger.) 2009, 21, 2808. (31) Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. (Weinheim, Ger.) 2006, 18, 789. (32) Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. (Weinheim, Ger.) 2006, 18, 789. (33) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu- Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 130, 732. (34) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. (Washington, DC, U. S.) 2009, 109, 5868. (35) Hou, J.; Chen, T. L.; Zhang, S.; Huo, L.; Sista, S.; Yang, Y. Macromolecules 2009, 42, 9217. (36) Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378. (37) Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2005, 15, 745. (38) Zheng, Q.; Jung, B. J.; Sun, J.; Katz, H. E. J. Am. Chem. Soc. 2010, 132, 5394. (39) Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R. Applied Physics A: Materials Science & Processing 2004, 79, 31. (40) Schulz, G. L.; Chen, X.; Holdcroft, S. Appl. Phys. Lett. 2009, 94, 023302. (41) Zhang, F.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O. Adv. Funct. Mater. 2006, 16, 667. (42) Lu, J.; Liang, F.; Drolet, N.; Ding, J.; Tao, Y.; Movileanu, R. Chem. Commun. (Cambridge, U. K.) 2008, 5315. (43) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J.-F.; Leclerc, M. Adv. Funct. Mater. 2006, 16, 1694. (44) Thompson, B. C.; Kim, B. J.; Kavulak, D. F.; Sivula, K.; Mauldin, C.; Frechet, J. M. J. Macromolecules 2007, 40, 7425. (45) Gong, C.; Song, Q. L.; Yang, H. B.; Li, J.; Li, C. M. Sol. Energy Mater. Sol. Cells 2009, 93, 1928. (46) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328. (47) Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761. (48) Van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Materials Science and Engineering: R: Reports 2001, 32, 1. (49) Roncali, J. Chem. Rev. (Washington, DC, U. S.) 1997, 97, 173. (50) Shirota, Y.; Okumoto, K.; Inada, H. Synth. Met. 2000, 111-112, 387. (51) Y. J. Cheng; S. H. Yang;C. S. Hsu Chem. Rev. 2009, 109, 11. (52) Akinori S. ; Takahiro F. ; Shu S. Macromolecules 2011, 44, 3416. (53) Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 1173. (54) Li, Y.; Zou, Y. Adv. Mater. (Weinheim, Ger.) 2008, 20, 2952. (55) Tan, Z. a.; Zhou, E.; Yang, Y.; He, Y.; Yang, C.; Li, Y. Eur. Polym. J. 2007, 43, 855. (56) Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911. (57) Zhou, E.; Tan, Z. a.; Huo, L.; He, Y.; Yang, C.; Li, Y. The Journal of Physical Chemistry B 2006, 110, 26062. (58) Sang, G.; Zou, Y.; Li, Y. The Journal of Physical Chemistry C 2008, 112, 12058. (59) Sang, G.; Zhou, E.; Huang, Y.; Zou, Y.; Zhao, G.; Li, Y. The Journal of Physical Chemistry C 2009, 113, 5879. (60) Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y. Macromolecules 2005, 39, 594. (61) Hou, J.; Tan, Z. a.; He, Y.; Yang, C.; Li, Y. Macromolecules 2006, 39, 4657. (62) Tan, Z. A.; Hou, J.; He, Y.; Zhou, E.; Yang, C.; Li, Y. Macromolecules 2007, 40, 1868. (63) Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y. Macromolecules 2007, 40, 7231. (64) Li, H.; Parameswaran, M.; Nurmawati, M. H.; Xu, Q.; Valiyaveettil, S. Macromolecules 2008, 41, 8473. (65) Huo, L.; Chen, T. L.; Zhou, Y.; Hou, J.; Chen, H.-Y.; Yang, Y.; Li, Y. Macromolecules 2009, 42, 4377. (66) Huo, L.; Tan, Z. a.; Wang, X.; Zhou, Y.; Han, M.; Li, Y. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 4038. (67) Zhou, E.; He, C.; Tan, Z. A.; Yang, C.; Li, Y. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 4916. (68) Hou, J.; Yang, C.; Li, Y. Synth. Met. 2005, 153, 93. (69) Tan, Z. a.; Tang, R.; Zhou, E.; He, Y.; Yang, C.; Xi, F.; Li, Y. J. Appl. Polym. Sci. 2008, 107, 514. (70) Huo, L.; Tan, Z. a.; Zhou, Y.; Zhou, E.; Han, M.; Li, Y. Macromol. Chem. Phys. 2007, 208, 1294. (71) Shen, P.; Sang, G.; Lu, J.; Zhao, B.; Wan, M.; Zou, Y.; Li, Y.; Tan, S. Macromolecules 2008, 41, 5716. (72) Huo, L.; Zhou, Y.; Li, Y. Macromol. Rapid Commun. 2009, 30, 925. (73) Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H. Adv. Funct. Mater. 2007, 17, 3326. (74) Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.; Diau, E. W.-G.; Wei, K.-H. Adv. Funct. Mater. 2008, 18, 2356. (75) Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H. Adv. Mater. (Weinheim, Ger.) 2009, 21, 2093. (76) Peeters, H.; Verbiest, T.; Koeckelberghs, G. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 1891. (77) Yu, C.-Y.; Ko, B.-T.; Ting, C.; Chen, C.-P. Sol. Energy Mater. Sol. Cells 2009, 93, 613. (78) Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y. J. Am. Chem. Soc. 2009, 131, 13886.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3916-
dc.description.abstract本研究透過Suzuki coupling共聚反應合成一系列主鏈以芴與噻吩所組成,側鏈含有2,2’亞甲基雙苯並噻唑與丙二腈的新型P型共軛高分子。高分子因導入烷基鏈所以可溶於一般有機溶劑,並具備良好熱穩定性。由光譜與電化學性質得知,共軛高分子側鏈導入兩種拉電子基可使材料吸收光譜增寬,並降低共軛高分子的能隙,同時藉由高分子主鏈含芴與噻吩的比例不同調整HOMO能階,成功控制HOMO能階在理想的範圍內(-5.2~-5.8 eV)。在光伏性質表現上,開路電壓介於0.62~0.65 eV間,短路電流密度在1.40~4.34 mA/cm2間,填充因子在0.25 ~0.27間,光電轉換效率在0.23~ 0.73 %間,其中效率最高的元件是以共軛高分子PFDBT-2Th為電子提供者之太陽能電池的光電轉換效率最高為0.73 %,開路電壓為0.62 eV,短路電流密度為4.34 mA/cm2,填充因子為0.27。zh_TW
dc.description.abstractNovel fluorine/thiophene-based conjugated polymers with dibenzo [d] thiazol -2-yl methane and malononitrile based pendants were synthesized via Suzuki coupling reactions. All polymers exhibited good solubility in organic solvents and stable thermal properties. The introduction of dibenzo [d] thiazol-2-yl methane and malononitrile as side chains would broaden the absorption of solar spectra and modulate the band gap of polymers. With the various ratios of fluorine and thiophene, the HOMO level was located at an ideal range (-5.2~-5.8 eV). The photovoltaic characteristics- the Voc values are ranged from 0.62 to 0.65 eV; the Jsc values ranged from 1.40 to 4.34 mA/cm2; the FF values ranged from 0.25 to 0.27; the PCE values ranged from 0.23 to 0.73 %. The best performance of photovoltaic device was obtained using PFDBT-2Th/PCBM blend (1:1 w/w) as photo-energy conversion layer. The PCE of 0.73 %, a Voc of 0.62 eV, a Jsc of 4.34 mA/cm2, and a FF of 0.27 were achieved.en_US
dc.description.tableofcontents致謝 I 中文摘要 II 英文摘要 III 圖目錄 VI 表目錄 VIII 第一章 緒論 11 1.1前言 11 1.2 太陽能的優點 11 1.3 太陽能電池發展歷史與有機太陽能電池的優勢與分類 11 1.4 高分子太陽能電池工作原理 14 1.5 高分子太陽能電池結構演進 15 1.5.1 單層結構 (single layer structure) 16 1.5.2 雙層異質結面結構 (bilayer heterojunction structure) 16 1.5.3 混摻異質接面結構 (bulk heterojunction structure, BHJ) 17 1.6 太陽能電池的輸出特性 18 第二章 文獻回顧與研究動機 20 2.1 共軛高分子能階與開路電壓之關聯性 21 2.2 降低P型共軛性高分子HOMO能階 22 2.3 降低材料能隙 22 2.4 提升材料載子傳輸能力 24 2.5 增進P型共軛高分子與碳球衍生物的相容性 24 2.6 側鏈共軛高分子的研究 25 2.7 研究動機 26 第三章 實驗部份 29 3.1 藥品與溶劑 29 3.2 儀器 31 3.3 合成 34 3.3.1 單體合成 36 3.3.2共軛高分子聚合 47 第四章 結果與討論 52 4.1 共軛高分子基本特性 52 4.1.1 分子量 52 4.1.2 溶解性 52 4.1.3 熱性質 53 4.2 光學特性 55 4.2.1 紫外光-可見光光譜 (UV-vis ) 55 4.2.2 光致發光光譜儀 (PL) 58 4.3 電化學特性 61 4.4 主動層型態分析 63 4.4.1 原子力顯微鏡 (AFM) 63 4.5 元件光伏特性質分析 66 4.5.1共軛高分子基本元件光伏特性質探討 66 第五章 結論 68 第六章 參考文獻 69 附錄 76zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201121414500en_US
dc.subjectorganic solar cellen_US
dc.subject有機太陽能電池zh_TW
dc.title側鏈含2,2’亞甲基雙苯並噻唑與丙二腈之 P型共軛高分子合成及其在太陽能電池應用 與光電性質探討zh_TW
dc.titleFluorene/Thiophene-Based Conjugated Polymers Comprising Dibenzo[d]thiazol-2-yl methane and Malononitrile Pendants for Photovoltaic Devicesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.