Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3937
標題: Investigations of the effects of nanostructure and micro horizontal vibration on cell proliferation
奈米結構與微水平震動平台對細胞生長之影響研究
作者: 李靜雯
Ching-Wen, LI
關鍵字: vacuum air-extraction process;真空抽氣法;nanostructured;PLGA scaffold;micro horizontal vibrations;BEC;奈米結構;微水平震動;牛頸動脈內皮細胞
出版社: 生醫工程研究所
引用: 1. Rubin C. T., Sommerfeldt D. W., Judex S., Qin Y. X. “Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli,” Drug Discov Today , 6, 848-858, 2001. 2. Diane W., “Low Buzz May Give Mice Better Bones and Less Fat,” The New York Times, 2007. 3. Sujata V. BHAT, “Biomaterial,” Alpha Science, 2002. 4. 潘勁屹,“聚己內酯表面活化與表面奈米化對細胞生長之研究,”國立雲林科技大學化學工程系研究所碩士論文,2003。 5. http://en.wikipedia.org/wiki/PLGA, wikipedia. 6. Liu H, Webster TJ, “Nanomedicine for implants: A review of studies and necessary experimental tools,” Biomaterials, 28, 354-369, 2007. 7. Qin XY, Kim JG, Lee JS, “Synthesis and magnetic properties of nanostructured γ-Ni-Fe alloys,” Nanostruct Mater, 11(2), 259-270, 1999. 8. Webster TJ, Siegel RW, Bizios R,“Osteoblast adhesion on nanophase ceramics,” Biomaterials, 20(13), 1221-1227, 1999. 9. Webster TJ, Ergun C, Doremus RH, “Enhanced functions of osteoblasts on nanophase ceramics,” Biomaterials, 21(17), 1803-1810, 2000. 10. Miller DC, Thapa A, Haberstroh KM, “Endothelial and Vascular Smooth Muscle Cell Function on Poly(lactic-co-glycolic acid) with Nano-StructuredSurface Features, ” Biomaterials, 25(1), 53-61, 2004. 11. Wan Y, Qu X, Lu J, Zhu C, Wan L, Yang J, Bei J, Wang S, “Characterization of surface property of poly (lactide-co-glycolide) after oxygen plasma treatment, ” Biomaterials, 25, 4777-4783, 2004. 12. 湯仁忠,“聚醯亞胺複合材料及含磷雙馬來醯亞胺耐燃材料之製備與性質探討,”中原大學化學學系博士學位論文,2005。 13. 林侑達,“以陽極氧化鋁模板製備3D均勻分布之奈米金粒子生物感測器,”中興大學機械工程研究所碩士論文,2008。 14. Alvaro, M., Cynthia, B., Aaron, J. F., George, M., Shuvo, R., “Analysis of Connective Tissue Progenitor Cell Behavior on Polydimethylsiloxane Smooth and Channel Micro-Textures,” Biomedical Microdevices, 4, 267-275, 2002. 15. Choudhary S, Haberstroh KM, Webster TJ,“Greater endothelial cell responses to nanophase mrtals,” Int J Nanomed, 1(1), 37-47, 2006. 16. Degasne I, Basle MF, Demais V, et al.“Effects of roughness, fibronectin and vitronectin on Attachment, Spreading, and Proliferation of Human Osteoblast-Like Cells (Saos-2) on Titanium Surfaces, ” Calcified Tissue International, 64(6), 499-507, 1999. 17. Webster T. J.,“Nanophase ceramics:the future orthopedic and dental implant material,” In: Ying JY, editor, Advances in chemical engineering volume 27: nanostructure materials, san Diego, CA: Academic Press, 126-160, 2001. 18. Thapa A, Miller DC, Webster TJ,“Nano-structured polymers enhance bladder smooth muscle cell function,” Biomaterials, 24, 2915-2926, 2003. 19. Dalbya MJ, Giannarasa D, Riehlea MO, Gadegaarda N, Affrossmanb S, Curtis ASG,“Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography,” Biomaterials, 25(1), 77-83, 2004. 20. 蕭文正,“使用壓電致動器之三自由度微操作平台,”中山大學機械與機電工程學系碩士論文,2004。 21. Fujishima S, “The history of ceramic filters,” Ultrasonics, Ferroelectrics, and Frequency Control Society, 47(1), 1-7, 2000. 22. Zhu C., Bao G., Wang N., “Cell mechanics:mechanical response, cell adhesion, and molecular deformation.” Annu. Rev. Biomed. Eng, 2, 189-226, 2000 23. Chicurel M. E., Chen C. S., Ingber D. E.,”Cellular control lies in the balance of force.” Curr. Opin. Cell Biol., 10, 232-239, 1998. 24. Fabry B., Fredberg J.J., “Remodeling of the airway smooth muscle cell: are we built of glass?” Respir Neurobiol, 137, 109-124, 2003. 25. Liu M., Tanswell A. K., Post M., “Mechanical force-induced signal transduction in lung cells.” Am J Physiol Lung Cell Mol Physiol, 277, 667-683, 1999. 26. Wirtz H. R., Dobbs L.G., “The effects of mechanical force on lung functions.” Respir. Physiol., 119, 1-17, 2000. 27. Puig C., Ferranda M., ”Effects of mechanical stimuli of vibration and stretch on airway epithelial cells” Universitat de Barcelona, 2007. 28. Rommel G. B., Theo H. S., Jack J.W. A., Behrouz Z. D., Marco H., Jenneke K. N., ”Bone cell response to high-frequency vibration stress: does the nucles oscillate within the cytoplasma? ” The FASEB Journal, 20, 858-864, 2006. 29. Warden S. J., Turner C. H., “Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10Hz.” Bone, 34, 261-270, 2004. 30. 傅世澤,”奈微米級定位平台最佳化設計與分析”中興大學機械工程研究所碩士論文,1991年。 31. “ Physilk Instrument ”,PI,1998年
摘要: 
細胞與支架材料之交互作用乃是組織工程重要之研究主題之ㄧ,本研究以具生物相容性與具生物可降解特性之PLGA高分子材料做為支架,分別探討內皮細胞於具不同奈米結構之PLGA支架以及對PLGA支架施以微水平震動刺激後其生長情形。
PLGA為廣泛應用之生物可降解材料之一,而具奈米結構之PLGA更是在組織工程上有極大之應用潛能。本研究利用陽極氧化鋁模(AAO)結合真空抽氣法之物理方式翻模,製作不同奈米結構之PLGA支架,以牛頸動脈內皮細胞之生長比較不同奈米結構對於細胞生長與貼附的影響。將PLGA溶液澆鑄於陽極氧化鋁模(AAO)上,經過1-2小時使得表面凝固;再放入真空烘箱經由抽氣使得PLGA半凝固態之PLGA材料能擠壓進入奈米孔洞中,形成柱狀奈米結構,奈米結構之尺寸可由抽氣時間加以控制;接著,將抽氣後的PLGA試片浸泡於磷酸溶液中去除氧化鋁,或直接脫膜,即可得到奈米結構PLGA支架,細胞貼附測試結果,研究結果顯示表面粗糙度為25奈米之柱狀奈米結構PLGA支架,較利於內皮細胞之生長。
微水平震動部份,本研究以微水平震動平台對內皮細胞施加頻率為0.5Hz、1Hz、2Hz,震幅為20μm之微水平震動刺激。研究結果發現,具奈米結構PLGA支架較不適合施加微水平震動刺激,其原因乃是材料表面奈米化,使材料表面較為疏水,故細胞於粗糙度越小之PLGA支架生長情形越差。若對無奈米結構之PLGA支架,施以1Hz之微水平震動,細胞之增生率甚至較在24-well中為佳。
本研究發現,適當之奈米結構以及適當頻率之微水平震動皆可有效刺激內皮細胞增生。然而,兩種刺激方式並無法同時使用,主要原因乃是奈米結構會降低材料表面之疏水性且減少細胞與材料之接觸面積,在微水平震動時,培養液較不易保留且細胞貼附面之剪應力增加,反而不利於細胞之增生。

Interactions between cell and scaffold material is one of the main interesting topics in tissue engineering. In this research, influences of nanostructured PLGA scaffolds and micro horizontal vibrations on bovine endothelial cells (BEC) were investigated, respectively.
In the study of the interactions between BEC and nanostructured PLGA scaffolds, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 68 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using BEC demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.
In the study of the influences of micro horizontal vibrations on BEC proliferations, different frequencies 0.5 Hz, 1 Hz, and 2 Hz respectively with a 20 micro-meter amplitude, using a piezoelectric micro-positioning stage, were applied to nanostructured and flat PLGA scaffolds during cell cultivation. It was found that the proliferation of BEC on nanostructured PLGA scaffold under micro horizontal vibrations was suppressed. It is presumed that the nanostructures made the surface of the scaffold more hydrophobic, hence degraded the adhesions between BECs and the scaffold. On the contrary, the proliferations of BECs on a flat PLGA scaffold were enhanced under vibrations of 1 Hz frequency and 20 micro-meter amplitude. The 1 Hz frequency is close to the pulse rate of mature cattle (60-80 Hz).
In this research, both the nanostructured PLGA scaffolds and the 1 Hz micro horizontal vibrations on flat PLGA scaffolds were discovered to be able to enhance the proliferation of BECs. However, the micro horizontal vibrations using a piezoelectric micro-positioning stage is much easier to be implemented.
URI: http://hdl.handle.net/11455/3937
其他識別: U0005-2107200913440900
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.