Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3943
標題: 萬古黴素在甲殼素/氫氧基磷灰石複合微球之包覆與釋放研究
Chitosan/Hydroxyapatite Composite Microspheres for Vancomycin Loading and Releasing
作者: Kuo, Yi-Ting
郭宜婷
關鍵字: hydroxyapatite;氫氧基磷灰石;chitoasn;microsphere;antibacterial;cell culture;幾丁聚醣;微球;抑菌;細胞培養
出版社: 生醫工程研究所
引用: 1.J. Schniedersa, U. Gbureckb, R. Thullb, T. Kissela. “Controlled release of gentamicin from calcium phosphate—poly(lactic acid-co-glycolic acid) composite bone cement.” Biomaterials 27 (2006) 4239-4249 2.M. Sivakumar, I. Manjubala, K. Panduranga Rao. Preparation, “Characterization and in-vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres.” Carbohydrate Polymers 49 (2002) 3175-3181 3.S. Jinawath, D. Pongkao, and M. Yoshimura. “Hydrothermal synthesis of hydroxyapatite from natural source” J. Mater. Sci. Mater. Med. 13 ( 2002) 491-494 4.R. R. Ramachandra, H. N. Roopa, and T. S. Kannan “Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders” J. Mater. Sci. Mater. Med. 8 (1997) 511-518 5.F. Wang, M. S. Li, Y. P. Lu and Y. X. Qi “A simple sol-gel techniquefor preparing hydroxyapatite nanopowders” Materials Letters. 59 (2005) 916-919 6.L. Bernard, M. Freche, J. L. Lacout, and B. Biscans “Preparation of hydroxyapatite by neutralization at low temperature—influence of purity of the raw material” Powder Technol. 103 (1999) 19 7.F. Nagata, T. Miyajima, and Y. Yokogawa “A method to fabricate hydroxyapatite/poly(lactic acid) microspheres intended for biomedical application” J. European Ceram. Soc. 26 (2006) 533-535 8.X. Wang, H. Fan, Y. Xiao, and X. Zhang “Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering” Materials Letters. 60 (2006) 455-458 9.T. Masuko, N. Iwasaki, S. Yamane, T. Funakoshi, T. Majima, A. Minami, N. Ohsuga, T. Ohta, S. Nishimura. “Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering.” Biomaterials 26(26) (2005) 5339-47 10.C. D. Hoemann, J. Sun, A. Legare, M. D. McKee, M. D. Buschmann. “Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis and cartilage ,13(4) (2005) 318-29 11.E. Cevher, Z. Orhan, L. Mulazimoğlu, D. Şensoy, M. Alper, A.Yildiz, Y. Ozsoy. “Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres.” Int J Pharm 317 (2006) 127-135 12.T. P. Learoyd., J. L. Burrows, E. French, P. C. Seville. “Modified release of beclometasone dipropionate from chitosan-based spray-dried respirable powders.” Powder Technology 187 (2008) 231-238 13.S. Nsereko, M. Amiji, “Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations.” Biomaterials 23 (2002) 2723-2731 14.X. Y. Shi, T. W. Tan, “Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of vitamin D2.” Biomaterials 23 (2002) 4469-4473 15.M. L. Tsai, S. W. Bai, R. H. Chen. “Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle.” Carbohydrate Polymers 71 (2008) 448-457 16.M. A. Bayomi, S. A. Al-Suwayeh, A. M. El-Helw, A. F. Mesnad. “Preparation of casein-chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique.” Pharmaceutica Acta Helvetiae 73 (1998) 187-192 17.V. R. Sinha , A. K. Singla , S. Wadhawan , R. Kaushik , R. Kumria , K. Bansal and S. Dhawan.“Chitosan microspheres as a potential carrier for drugs.” Int. J. Pharm. 274 (2004) 1-33 18.F. Nagate, T. Miyajima and Y. Yokogawa, “A method to fabricate hydroxyapatite/poly(latic acid) microspheres intended for biomedical application.” Journal of the European Ceramic Society, 26 (2006) 533-535. 19.Wikipedia http://en.wikipedia.org/wiki/Vancomycin 20.M.P. Ferraz, A.Y. Mateus, J.C. Sousa, F.J. Monteiro. “Nanohydroxyapatite microspheres as delivery system for antibiotics: Release kinetics, antimicrobial activity, and interaction with osteoblasts.” J. Biomed. Mater. Res. Part A, 81 (2007) 994-1004. 21.K. S. W. Sing, D. H. Evertt, R. A. Hayl, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Simieniewska. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.” Pure & Appl. Chem. 57 (1985) 603-619.
摘要: 
本研究利用無機磷酸鈣鹽以及可降解之生物高分子水溶液,成功製備出具有多孔性質且粒徑均一的的生物高分子/ 氫氧基磷灰石(hydroxyapatite, Ca10(PO4)6(OH)2, HA)複合微球。而此複合微球之特性以掃描式電子顯微鏡 (SEM/ FE-SEM)、X射線繞射儀 (XRD)、傅立葉轉換紅外線光譜儀 (FTIR)、熱重與熱差分析儀 (TGA/DSC)、比表面積與孔隙度分析儀 (BET),以及能量散佈光譜儀 (EDS)等做分析,用來觀察生物高分子/ hydroxyapatite複合微球之表面形貌、結晶相、化學鍵結、熱穩定性、孔洞分布以及組成成分。由數據顯示,此複合微球之表面形態是為多孔狀的結構且具有36.66 m2/g的表面積,擁有大量的介孔,孔隙大小分布於3~100 nm,孔洞體積高達0.58 cm3/g。因此運用其高比表面積與孔洞體積於萬古黴素 (Vancomycin)的體外吸附與釋放實驗 (in-vitro drug release)。為了更加延長萬古黴素的釋放時間,以幾丁聚醣 (chitosan)附著在負載藥物的複合微球。藥物釋放曲線呈現三階段,第一階段發生在24小時之內,藥物會有一突釋現象,係由於表面的藥物快速釋出;第二階段於2~7天內發生,是由於藥物/複合微球附著的chitosan降解,使得釋放曲線呈現穩定線性分布;第三階段發生在一周之後,釋放速率更趨平緩,係由於存於介孔的藥物釋出。本研究亦探討經由複合微球包覆過後的萬古黴素對於金黃色葡萄球菌 (staphylococcus aureus)的抑菌效果,得到的抑菌圈隨著藥物釋放濃度增加而增加,此現象意謂著抗生素負載於複合微米球之處理,仍保有化學活性與穩定性。再憑藉細胞實驗對此複合微球進行測試,結果顯示此材料對細胞不具毒性並且可幫助類骨母細胞的增值與分化。

In this study, the biopolymer/ hydroxyapatite (HA) composite microspheres with porous and uniform size have been synthesized in inorganic calcium phosphate and biodegradable biopolymer aqueous solution. The characterization of composite microspheres was analyzed by scanning electron microscopy (SEM/FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrograph spectrometer (FTIR), thermal analysis (TGA/DSC), specific surface area/porosimetry & chemisorption analyzer (BET) and energy-dispersive X-ray spectroscopy (EDS), to observe their morphology, crystalline phase, chemical bonding , thermal stability, pore distribution and composition. The results indicated, the morphology of composite microspheres is porous structure with specific surface area 36.66 m2/g, pore size from 3~100nm, and pore volume 0.58 cm3/g. Taking advantage of its high specific surface area and pore volume, the tests of absorption and release for vancomycin (one of the antibiotic) were carried out. In order to prolong the release time of vancomycin, chitosan was coated on the drug loaded microspheres. The in-vitro drug release contained three steps. The first step revealed a drastic release rate in 24 hours was caused by the dissolution of drug on the surface. The second step from day 2 to 7 was a mediate release rate results from the degradation of chitosan which is coated on the drug/composite microspheres, making a linear distribution curve. The third step was after a week, more gentle release rate caused by the drug release from mespores in microspheres. Regarding bacteriostasis effect of vancomycin/composite microspheres on staphylococcus aureus, the inhibition zone was increased with the measured concentration at each immersion time. This means that antibiotics loaded into the composite microspheres remained chemically stable and active after the processing. The in vitro cellular assay indicated that composite microspheres were non-toxic and could improve the proliferation and differentitation of osteoblast-like cell.
URI: http://hdl.handle.net/11455/3943
其他識別: U0005-2108201014543700
Appears in Collections:生醫工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.