Please use this identifier to cite or link to this item:
標題: 以介電泳力量測牛頸動脈內皮細胞在不同生醫材料之貼附效果
Measurement of adhesive force of Bovine endothelial cells on different biomaterials by Dielectrophoresis
作者: Lin, Yi-Wei
關鍵字: dielectrophoretic force;介電泳;MEMS fabrication technique;cell adhesion;微製程技術;細胞貼附力
出版社: 生醫工程研究所
引用: [1] 宋信文、梁晃千,“建立人類的人體工房—組織工程,”科學發展 Vol.362,6-11,2003。 [2] Kovacs GTA, Maluf NI and Petersen KE, “Bulk micromachining of silicon, ”Proceedings of the IEEE,86(8):1536-1551,1998. [3] Pan L. C. , Liang Y. C. , Tseng F. G. , Leou K. C. , Chen L. D. and Lai Y. Y. , “A novel application of acoustic plate mode sensor in tissue regeneration. Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies, ”Medicine & Biology,143-144, 2002. [4] Han A. , Rooij N. F. D. and Staufer U. , “Design and fabrication of nanofluidic devices by surface micromachining, ” Nanotechnology, 17:2498–2503,2006. [5] Chang H. K. and Kim Y. K. , “UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole, ”Sensors and Actuators,84(3):342-350,2000. [6] Xia Y. and Whitesides G. M. , “Soft lithography, ”Annu.Rev.Mater. Sci,28:153-184,1998. [7] Rogers J. A. and Nuzzo R. G. , “Recent progress in soft lithography, ” Materials today,8:50-56,2005. [8] 李世光、胡毓忠,“微機電系統與奈米科技,”科學發展Vol.378 ,57-61,2004。 [9] Madou M. J. , Lee L. J. , Daunert S. , Lai S. and Shih C. H. ,“Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions, ”Biomedical Microdevices,3(3):245-254 ,2003. [10] Martin R. S. , Gawron A. J. , Lunte S. M. and Henry C. S. , “Dual- electrode electrochemical detection for poly(dimethylsiloxane) -fabricated capillary electrophoresis microchips, ”Anal.Chem. ,72:3196-3202,2000. [11] Jiang G. , Attiya S. , Ocvirk G. , Lee W. E. and Harrison D. J. , “Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis, ” Biosensors and Bioelectronics,14(10-11):861-869,2000. [12] 潘吉祥,“微機電系統技術於生醫的應用,”國立勤益技術學院 機械系,勤益學報第十九期。 [13] 生醫材料的特性- [14] 黃世偉,”高分子材料與醫療器材,”科學發展Vol.455,14-19, 2010。 [15] 黃何雄、何俊德、游惠婷、潘思蓉、李天翎、楊明鈴、廖保鑫、 周明勇、徐啟智,“Ti及Ti-6Al-4V合金表面粗糙度對類造骨 U-2OS細胞初期貼附及增殖之影響,”中華牙醫學雜誌Vol.23 ,3,2004。 [16] 丁彥中,“奈米級直溝地形對骨母細胞貼附形態之影響,”國立 台灣大學化學工程學研究所碩士學位論文,2006。 [17] 湯為淳,“羊膜培養環境中內皮細胞可提升整合素表現與附著 度,”東海大學生命科學系碩士班碩士論文,2007。 [18] Becker W. M. , Kleinsmith L. J. , Hardin J. and Bertoni G. P. , The world of the cell,7th edition.PEARSON,2009. [19] Integrin regulation of cell migration and focal adhesions- nrc/journal/v8/n8/images/nrc2353-i2.jpg&imgrefurl= Gi7zrgQQw5-fozBQkkGCkI=&h=579&w=305&sz=87&hl=zh-T W&start=4&sig2=Ym7MezCjc0rNZ4YSaklx8w&zoom=1&tbnid= XzFzILVNluUOuM:&tbnh=134&tbnw=71&ei=u1OsTb2BA46Su APHntmECQ&prev=/search%3Fq%3Dfocal%2Badhesion%26um %3D1%26hl%3Dzh-TW%26sa%3DN%26rlz%3D1R2PPST_zh-T WTW418%26biw%3D1659%26bih%3D814%26tbm%3Disch&u m=1&itbs=1 [20] 謝夙惠,“Galectin-1透過neuropilin-1調控人類內皮細胞的貼附 和移動,”國立成功大學口腔醫學研究所碩士論文,2006。 [21] Boveri T. , “The origin of malignant tumours, ” Baillière, tindall & Cox ,1914. [22] Benoit M. , Gabriel D. , Gerisch G. and Gaub H. E. , “Discrete interactions in cell adhesion measured by single-molecule forces pectroscopy, ” Nature Cell Biology, 2:313-317, 2000. [23] Chu Y. S. , Thomas W. A. , Eder O. , Pincet F. , Perez E. , Thiery J. P. and Dufour S. , “Force measurements in E-cadherin–mediated cell doublets reveal rapid adhesion strengthened by actin cytoske- leton remodeling through Rac and Cdc42 , ” The Journal of cell biology,167(6):1183-1194,2004. [24] Ko T. M. , Lin J. C. and Cooper S. L. ,“Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene, ” Biomaterials,14(9):657-64,1993. [25] Tamada Y. and Ikada Y. , “Fibroblast growth on polymer surfaces and biosynthesis of collagen, ” J Biomed Mater Res,28(7):783-789, 1994. [26] Lotz M. M. , Burdsal C. A. , Erickson H. P. , and McClay D. R. , “Cell adhesion to fibronectin and tenascin:quantitative measu- rements of initial binding and subsequent strengthening respo- nse, ” The Journal of Cell Biology,109:1795-1805,1989. [27] Maheshwari G. , Brown G. , Lauffenburger D. A. , Wells A. and Griffith L. G. ,“Cell adhesion and motility depend on nanoscale RGD clustering, ” Journal of Cell Science,113:1677-1686,2000. [28] Furukawa K. S. , Ushida T. , Nagase T. , Nakamigawa H. ,Noguchi T. ,Tamaki T. , Tanaka J. and Tateishi T. ,“Quantitative analysis of cell detachment by shear stress, ” Materials Science and Engineeri- ng C17: 55–58, 2001. [29] Moussya F. , Linb F. Y. H. , Lahooti S. , Policova Z. , Zinggd W. and Neumannc A. W. , “A micropipette aspiration technique to investigate the adhesion of endothelial cells, ”Elsevter Scrence B.V.,2:493-503,1994. [30] Song G. B. , Qin J. , Luo Q. , Shen X. D. , Yan R. B. and Cai S. X. ,“Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1, ” World J Gastroenterol ,11(2):212-215, 2005. [31] Yamamoto A. , Mishima S. , Maruyama N. and Sumita M. ,“ A new technique for direct measurement of the shear force necessary to detach a cell from a material, ” Biomaterials, 19:871-879, 1998. [32] Lee C. C. , Wu C. C. and Su F. C. ,“The technique for measurem- ent of cell adhesion force, ”Taiwan R.O.C. , National Cheng Kung University, 2004. [33] Kwon K. W. , Choi S. S. , Kim B. , Lee S. N. , Park M. C. , Kim P. , Lee S. H. ,Park S. H. and Suh K. Y.,“ A microfluidic flow sensor for measuring cell adhesion , ” IEEE Sensors, 2006. [34] Lu H. , Koo L. Y. , Wang W. M. , Lauffenburger D. A. , Griffith L. G. , and Jensen K. F. ,“Microfluidic shear devices for quantitative analysis of cell adhesion, ” Analytical Chemistry,76:5257-5264 ,2004. [35] Hung M. S. , Chen Y. W. , Lin C. J. , Ay C. and Chiou C. P. ,“ Measurement of Human Endothelial Cell adhesion using dielectrophoresis, ” Journal of The Chinese Society of Mechanical Engineers,30(5):393-400,2009. [36] Pohl H. A. ,“The motion and precipitation of suspensoids in divergent electric fields,”J. Appl. Phys. 22:869-871,1951. [37] 粘正勳、邱聞鋒,“介電泳動─承先啟後的奈米操縱術,”物理 雙月刊,廿三卷六期,2004。 [38] 林彥亨,“利用介電泳力操控細胞之生物晶片研究,”國立成功 大學工程科學系碩士班碩士論文,2002。 [39] Goater A. D. and Pethig R. ,”Electrorotation and dielectrophoresis, ” Parasitology,117,S177-S189, 1998. [40] 林育德,“平面式微介電泳系統之研發與其在生物微粒分離上 之應用,”國立成功大學醫學工程研究所碩士論文,2002。 [41] 鄭傑輿,“利用介電泳力評估人類臍靜脈內皮細胞貼附力最適化 量測模式之研究,”國立嘉義大學生物機電工程學系碩士論文, 2007。 [42] Morgan H. and Green N. G. ,“AC electrokinetics: colloids and nanoparticles , ”Microtechnologies and microsystems series. Research Studies Press,2003. [43] Heller J. H. , Teixeira-Pinto A. A. , Nejelski L. L. and CutlerJ. L. ,“The behavior of unicellular organisms in an electromagnetic field, ”Cell Res 20,548-564 ,1960. [44] Pohl H. A. and Crane J. S. ,“Dielectrophoresis of cells, ”Biophysic- al Journal,11(9)1971. [45] Masuda S. , Washizu M. and Kawabatai I. , “ Movement of Blood Cells in liquid by Nonuniform Traveling Field, ” IEEE Transactio- ns On Industry Applications,24(2),1988. [46] Pethig R. and Markx G. H. , “Applications of dielectrophoresis in biotechnology, ”Elsevier Science,15,1997. [47] Iliescu C. , Xu G. L. , Samper V. and Tay F. E. H. ,“Fabrication of a dielectrophoretic chip with 3D silicon electrodes, ” Journal of Micromechanics and Microengineering,2005. [48] Tay F. E. H. , Yu L. , Pang A. J. and Iliescu C. ,“Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation, ” Electrochimica Acta 52:2862 –2868,2007. [49] Lapizco-Encinas B. H. , Simmons B. A. , Cummings E. B. and Fintschenko Y. ,“Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators, ” Analytical Chemistry, 76(6):1571-1579, 2004. [50] Lin Y. H. and Lee G. B. , “ An optically induced cell lysis device using dielectrophoresis, ” Applied Physics Letters,94(3),2009. [51] 聚二甲基矽氧烷- [52] Eddings M. A. , Johnson M. A. and Gale B. K. ,“ Determining the optimal PDMS–PDMS bonding technique for microfluidic devices , ” Journal Of Micromechanics And Microengineering,18,2008. [53] Jo B. H. , Lerberghe L. M. V. , Motsegood K. M. and Beebe D. J. , “Three-Dimensional Micro-Channel Fabrication in Polydimethyl- siloxane(PDMS) Elastomer, ” Journal Of Microelectromechanical Systems,9(1),2000. [54] Fuard D. , Tzvetkova-Chevolleau T., Decossas S., Tracqui P. and Schiavone P. ,“Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility, ” Microelectronic Engineering,85:1289–1293, 2008. [55] 聚乳酸- B8 [56] 柯文昌、楊正昌、王敦正、馮琮涵、陳立典、李憲坤、李勝揚, “聚乳酸骨釘骨板與骨斷裂面間於癒合過程中之交互作用,”中 華牙醫學雜誌Vol.23,3,2004。 [57] 聚乳酸(PLA)的應用- 5aeb2ceba64.doc [58] 吳岳桐, “微粒子導電度量測與在其介電泳晶片上的應用,” 國立成功大學醫學工程研究所碩士論文, 2004。 [59] 在高頻交流電場下藉非對稱誘導電荷極化所造成之非線性電滲拉伸流- [60] 李靜雯,“奈米結構與微水平震動平台對細胞生長之影響研究,” 國立中興大學生醫工程研究所碩士學位論文,2009。
Compared with the working medium, cell is easily to encounter an electric field induced polarization. Hence a positive dielectrophoretic force, which is generated due to an unbalanced electric field, will drive the cell toward the area of high electric field density. In this study, the finite element analysis software COMSOL is used to investigate the influence of an electric field on cell behavior for a better design of the dielectrophoretic electrode. Accordingly, a dielectrophoretic device that contains several micro electrodes for producing unbalanced electric field is fabricated using microelectromechanical fabrication technique. The proposed device is then used for the detection of cell adhesive force on PDMS and PLA.
It is observed that those cells cultured on PDMS firmly stick on the material without any movement under the actions of different dielectrophoretic force. However, the dielectrophoretic force due to a 6 V applied potential is enough to move those cells having cultured on the PLA for 4 and 6 hr. When the culture period is increased to 8 hr, a higher applied potential of 16V is required to move the cells. The cells cultured on the PLA for 24 hr are not relaxed by the dielectrophoretic force even a higher potential is applied. Theoretically, a higher applied voltage can induce a larger driving force to move the cultured cells. For the PLA scaffold, a higher potential is required to move those cells having longer culture time. While for the PDMA scaffold, the cells cultured on it have a much higher adhesive force such that the dielectrophoretic force generated by the proposed device cannot lift the cells from the scaffold. A higher applied potential results in the unwanted cell lysis.
The contact angles of PDMS and PLA are measured to be 92.21and 83.11, respectively. It indicates that the PLA surface is more hydrophilic than PDMS. In general, cells should have a better adhesion on PLA scaffold. However, the experimental results in this study reveal that cells have better adhesion on the PDMS scaffold. It is presumed that other properties of the scaffold influence the cell adhesion more than its hydrophilic-hydrophobic property.

其他識別: U0005-2607201123490400
Appears in Collections:生醫工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.